Matches in SemOpenAlex for { <https://semopenalex.org/work/W2460698931> ?p ?o ?g. }
- W2460698931 endingPage "2805" @default.
- W2460698931 startingPage "2791" @default.
- W2460698931 abstract "Standard approaches to Bayesian parameter inference in large-scale structure assume a Gaussian functional form (chi-squared form) for the likelihood. This assumption, in detail, cannot be correct. Likelihood free inferences such as approximate Bayesian computation (ABC) relax these restrictions and make inference possible without making any assumptions on the likelihood. Instead ABC relies on a forward generative model of the data and a metric for measuring the distance between the model and data. In this work, we demonstrate that ABC is feasible for LSS parameter inference by using it to constrain parameters of the halo occupation distribution (HOD) model for populating dark matter haloes with galaxies. Using specific implementation of ABC supplemented with population Monte Carlo importance sampling, a generative forward model using HOD and a distance metric based on galaxy number density, two-point correlation function and galaxy group multiplicity function, we constrain the HOD parameters of mock observation generated from selected ‘true' HOD parameters. The parameter constraints we obtain from ABC are consistent with the ‘true' HOD parameters, demonstrating that ABC can be reliably used for parameter inference in LSS. Furthermore, we compare our ABC constraints to constraints we obtain using a pseudo-likelihood function of Gaussian form with MCMC and find consistent HOD parameter constraints. Ultimately, our results suggest that ABC can and should be applied in parameter inference for LSS analyses." @default.
- W2460698931 created "2016-07-22" @default.
- W2460698931 creator A5025226631 @default.
- W2460698931 creator A5033558209 @default.
- W2460698931 creator A5038913252 @default.
- W2460698931 creator A5060984452 @default.
- W2460698931 creator A5066466651 @default.
- W2460698931 creator A5075169680 @default.
- W2460698931 date "2017-04-17" @default.
- W2460698931 modified "2023-10-18" @default.
- W2460698931 title "Approximate Bayesian computation in large-scale structure: constraining the galaxy–halo connection" @default.
- W2460698931 cites W1892812743 @default.
- W2460698931 cites W1896203379 @default.
- W2460698931 cites W1973368884 @default.
- W2460698931 cites W1974931032 @default.
- W2460698931 cites W2000310419 @default.
- W2460698931 cites W2002142654 @default.
- W2460698931 cites W2003182532 @default.
- W2460698931 cites W2005720343 @default.
- W2460698931 cites W2013514048 @default.
- W2460698931 cites W2014377408 @default.
- W2460698931 cites W2018719255 @default.
- W2460698931 cites W2023393371 @default.
- W2460698931 cites W2025180048 @default.
- W2460698931 cites W2027747340 @default.
- W2460698931 cites W2030392256 @default.
- W2460698931 cites W2032469582 @default.
- W2460698931 cites W2034795216 @default.
- W2460698931 cites W2037342525 @default.
- W2460698931 cites W2042179541 @default.
- W2460698931 cites W2043528675 @default.
- W2460698931 cites W2045209379 @default.
- W2460698931 cites W2047301789 @default.
- W2460698931 cites W2048308623 @default.
- W2460698931 cites W2049137639 @default.
- W2460698931 cites W2054103046 @default.
- W2460698931 cites W2055327934 @default.
- W2460698931 cites W2067392831 @default.
- W2460698931 cites W2067709708 @default.
- W2460698931 cites W2073832139 @default.
- W2460698931 cites W2074259895 @default.
- W2460698931 cites W2107073439 @default.
- W2460698931 cites W2112370854 @default.
- W2460698931 cites W2115190959 @default.
- W2460698931 cites W2118059901 @default.
- W2460698931 cites W2121991715 @default.
- W2460698931 cites W2139937287 @default.
- W2460698931 cites W2142145978 @default.
- W2460698931 cites W2147357149 @default.
- W2460698931 cites W2153055079 @default.
- W2460698931 cites W2155711232 @default.
- W2460698931 cites W2156048499 @default.
- W2460698931 cites W2161078062 @default.
- W2460698931 cites W2179028626 @default.
- W2460698931 cites W2193432253 @default.
- W2460698931 cites W2261156197 @default.
- W2460698931 cites W3101369122 @default.
- W2460698931 cites W3101475602 @default.
- W2460698931 cites W3101503581 @default.
- W2460698931 cites W3102014803 @default.
- W2460698931 cites W3102239574 @default.
- W2460698931 cites W3103838041 @default.
- W2460698931 cites W3104319782 @default.
- W2460698931 cites W3104639138 @default.
- W2460698931 cites W3104668236 @default.
- W2460698931 cites W3105465984 @default.
- W2460698931 cites W3105554724 @default.
- W2460698931 cites W3106072945 @default.
- W2460698931 cites W3106456019 @default.
- W2460698931 cites W3122244790 @default.
- W2460698931 cites W3124310214 @default.
- W2460698931 cites W3125978220 @default.
- W2460698931 cites W4301002375 @default.
- W2460698931 doi "https://doi.org/10.1093/mnras/stx894" @default.
- W2460698931 hasPublicationYear "2017" @default.
- W2460698931 type Work @default.
- W2460698931 sameAs 2460698931 @default.
- W2460698931 citedByCount "41" @default.
- W2460698931 countsByYear W24606989312017 @default.
- W2460698931 countsByYear W24606989312018 @default.
- W2460698931 countsByYear W24606989312019 @default.
- W2460698931 countsByYear W24606989312020 @default.
- W2460698931 countsByYear W24606989312021 @default.
- W2460698931 countsByYear W24606989312022 @default.
- W2460698931 countsByYear W24606989312023 @default.
- W2460698931 crossrefType "journal-article" @default.
- W2460698931 hasAuthorship W2460698931A5025226631 @default.
- W2460698931 hasAuthorship W2460698931A5033558209 @default.
- W2460698931 hasAuthorship W2460698931A5038913252 @default.
- W2460698931 hasAuthorship W2460698931A5060984452 @default.
- W2460698931 hasAuthorship W2460698931A5066466651 @default.
- W2460698931 hasAuthorship W2460698931A5075169680 @default.
- W2460698931 hasBestOaLocation W24606989311 @default.
- W2460698931 hasConcept C105795698 @default.
- W2460698931 hasConcept C107673813 @default.
- W2460698931 hasConcept C111350023 @default.
- W2460698931 hasConcept C11413529 @default.
- W2460698931 hasConcept C121332964 @default.