Matches in SemOpenAlex for { <https://semopenalex.org/work/W2461179076> ?p ?o ?g. }
- W2461179076 endingPage "e0158285" @default.
- W2461179076 startingPage "e0158285" @default.
- W2461179076 abstract "Analytic measurement of serum tumour markers is one of commonly used methods for cancer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening based on multiple serum tumour markers has been frequently discussed. However, the risk-benefit outcomes appear to be unfavourable for patients because of the low sensitivity and specificity. In this study, cancer screening models based on multiple serum tumour markers were designed using machine learning methods, namely support vector machine (SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening performance for multiple cancers in a large asymptomatic population.AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals. PSA was measured in men and CA15-3 and CA125 in women. A variable selection process was applied to select robust variables from these serum tumour markers to design cancer detection models. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, area under the curve, and Youden index of the models based on single tumour markers, combined test, and machine learning methods were compared. Moreover, relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were evaluated.To design cancer detection models using machine learning methods, CYFRA21-1 and SCC were selected for women, and all tumour markers were selected for men. SVM and KNN models significantly outperformed the single tumour markers and the combined test for men. All 3 studied machine learning methods outperformed single tumour markers and the combined test for women. For either men or women, the ARRs were between 0.003-0.008; the ARIs were between 0.119-0.306.Machine learning methods outperformed the combined test in analysing multiple tumour markers for cancer detection. However, cancer screening based solely on the application of multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and ARI, even when machine learning methods were incorporated into the analysis." @default.
- W2461179076 created "2016-07-22" @default.
- W2461179076 creator A5008860535 @default.
- W2461179076 creator A5064859225 @default.
- W2461179076 creator A5068559570 @default.
- W2461179076 creator A5074519296 @default.
- W2461179076 creator A5074544999 @default.
- W2461179076 creator A5077548608 @default.
- W2461179076 date "2016-06-29" @default.
- W2461179076 modified "2023-10-16" @default.
- W2461179076 title "Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers" @default.
- W2461179076 cites W1220301675 @default.
- W2461179076 cites W1550140344 @default.
- W2461179076 cites W1651586605 @default.
- W2461179076 cites W1857503028 @default.
- W2461179076 cites W1982165141 @default.
- W2461179076 cites W1987304256 @default.
- W2461179076 cites W1996591824 @default.
- W2461179076 cites W1999318832 @default.
- W2461179076 cites W2007739294 @default.
- W2461179076 cites W2018949383 @default.
- W2461179076 cites W2020492074 @default.
- W2461179076 cites W2022462471 @default.
- W2461179076 cites W2026791237 @default.
- W2461179076 cites W2047228628 @default.
- W2461179076 cites W2058077691 @default.
- W2461179076 cites W2063136222 @default.
- W2461179076 cites W2071720959 @default.
- W2461179076 cites W2076044586 @default.
- W2461179076 cites W2093123838 @default.
- W2461179076 cites W2093160946 @default.
- W2461179076 cites W2098337454 @default.
- W2461179076 cites W2117354976 @default.
- W2461179076 cites W2140134094 @default.
- W2461179076 cites W2150814121 @default.
- W2461179076 cites W2153635508 @default.
- W2461179076 cites W2157183895 @default.
- W2461179076 cites W2165558391 @default.
- W2461179076 cites W57591602 @default.
- W2461179076 doi "https://doi.org/10.1371/journal.pone.0158285" @default.
- W2461179076 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4927114" @default.
- W2461179076 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27355357" @default.
- W2461179076 hasPublicationYear "2016" @default.
- W2461179076 type Work @default.
- W2461179076 sameAs 2461179076 @default.
- W2461179076 citedByCount "38" @default.
- W2461179076 countsByYear W24611790762016 @default.
- W2461179076 countsByYear W24611790762017 @default.
- W2461179076 countsByYear W24611790762018 @default.
- W2461179076 countsByYear W24611790762019 @default.
- W2461179076 countsByYear W24611790762020 @default.
- W2461179076 countsByYear W24611790762021 @default.
- W2461179076 countsByYear W24611790762022 @default.
- W2461179076 countsByYear W24611790762023 @default.
- W2461179076 crossrefType "journal-article" @default.
- W2461179076 hasAuthorship W2461179076A5008860535 @default.
- W2461179076 hasAuthorship W2461179076A5064859225 @default.
- W2461179076 hasAuthorship W2461179076A5068559570 @default.
- W2461179076 hasAuthorship W2461179076A5074519296 @default.
- W2461179076 hasAuthorship W2461179076A5074544999 @default.
- W2461179076 hasAuthorship W2461179076A5077548608 @default.
- W2461179076 hasBestOaLocation W24611790761 @default.
- W2461179076 hasConcept C119857082 @default.
- W2461179076 hasConcept C121608353 @default.
- W2461179076 hasConcept C126322002 @default.
- W2461179076 hasConcept C143998085 @default.
- W2461179076 hasConcept C151956035 @default.
- W2461179076 hasConcept C154945302 @default.
- W2461179076 hasConcept C2777910003 @default.
- W2461179076 hasConcept C2908647359 @default.
- W2461179076 hasConcept C41008148 @default.
- W2461179076 hasConcept C43346845 @default.
- W2461179076 hasConcept C58471807 @default.
- W2461179076 hasConcept C71924100 @default.
- W2461179076 hasConcept C99454951 @default.
- W2461179076 hasConceptScore W2461179076C119857082 @default.
- W2461179076 hasConceptScore W2461179076C121608353 @default.
- W2461179076 hasConceptScore W2461179076C126322002 @default.
- W2461179076 hasConceptScore W2461179076C143998085 @default.
- W2461179076 hasConceptScore W2461179076C151956035 @default.
- W2461179076 hasConceptScore W2461179076C154945302 @default.
- W2461179076 hasConceptScore W2461179076C2777910003 @default.
- W2461179076 hasConceptScore W2461179076C2908647359 @default.
- W2461179076 hasConceptScore W2461179076C41008148 @default.
- W2461179076 hasConceptScore W2461179076C43346845 @default.
- W2461179076 hasConceptScore W2461179076C58471807 @default.
- W2461179076 hasConceptScore W2461179076C71924100 @default.
- W2461179076 hasConceptScore W2461179076C99454951 @default.
- W2461179076 hasIssue "6" @default.
- W2461179076 hasLocation W24611790761 @default.
- W2461179076 hasLocation W24611790762 @default.
- W2461179076 hasLocation W24611790763 @default.
- W2461179076 hasLocation W24611790764 @default.
- W2461179076 hasOpenAccess W2461179076 @default.
- W2461179076 hasPrimaryLocation W24611790761 @default.
- W2461179076 hasRelatedWork W2027684363 @default.
- W2461179076 hasRelatedWork W2157758999 @default.
- W2461179076 hasRelatedWork W2394284613 @default.