Matches in SemOpenAlex for { <https://semopenalex.org/work/W246163639> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W246163639 endingPage "18" @default.
- W246163639 startingPage "13" @default.
- W246163639 abstract "The complete elliptic integral of the first kind arises in many applications. This article furnishes four different ways to compute the inverse of the elliptic integral. One motive for this study is simply that the author needed to compute the inverse integral for an application. Another is to develop a case study comparing different options for solving transcendental equations like those in the author’s book (Boyd, 2014). A third motive is to develop analytical approximations, more useful to theorists than mere numbers. A fourth motive is to provide robust “black box” software for computing this function. The first solution strategy is “polynomialization” which replaces the elliptic integral by an exponentially convergent series of Chebyshev polynomials. The transcendental equation becomes a polynomial equation which is easily solved by finding the eigenvalues of the Chebyshev companion matrix. (The numerically ill-conditioned step of converting from the Chebyshev to monomial basis is never necessary). The second approximation is a regular perturbation series, accurate where the modulus is small. The third is a power-and-exponential series that converges over the entire range parameter range, albeit only sub-exponentially in the limit of zero modulus. Lastly, Newton’s iteration is promoted from a local iteration to a global method by a Never-Failing Newton’s Iteration (NFNI) in the form of the exponential of the ratio of a linear function divided by another linear polynomial. A short Matlab implementation is provided, easily translatable into other languages. The Matlab/Newton code is recommended for numerical purposes. The other methods are presented because (i) all are broadly applicable strategies useful for other rootfinding and inversion problems (ii) series and substitutions are often much more useful to theorists than numerical software and (iii) the Never-Failing Newton’s Iteration was discovered only after a great deal of messing about with power series, inverse power series and so on." @default.
- W246163639 created "2016-06-24" @default.
- W246163639 creator A5074056648 @default.
- W246163639 date "2015-11-01" @default.
- W246163639 modified "2023-09-29" @default.
- W246163639 title "Four ways to compute the inverse of the complete elliptic integral of the first kind" @default.
- W246163639 cites W1967268253 @default.
- W246163639 cites W1982445140 @default.
- W246163639 cites W1989509454 @default.
- W246163639 cites W2003504038 @default.
- W246163639 cites W2003716108 @default.
- W246163639 cites W2004981929 @default.
- W246163639 cites W2006996544 @default.
- W246163639 cites W2020859221 @default.
- W246163639 cites W2029725284 @default.
- W246163639 cites W2033942740 @default.
- W246163639 cites W2034687666 @default.
- W246163639 cites W2057118106 @default.
- W246163639 cites W2059197239 @default.
- W246163639 cites W2068324845 @default.
- W246163639 cites W2068333375 @default.
- W246163639 cites W2075310472 @default.
- W246163639 cites W2092470208 @default.
- W246163639 cites W3098122627 @default.
- W246163639 cites W3105972024 @default.
- W246163639 cites W4211059729 @default.
- W246163639 cites W4239094102 @default.
- W246163639 doi "https://doi.org/10.1016/j.cpc.2015.05.006" @default.
- W246163639 hasPublicationYear "2015" @default.
- W246163639 type Work @default.
- W246163639 sameAs 246163639 @default.
- W246163639 citedByCount "1" @default.
- W246163639 countsByYear W2461636392020 @default.
- W246163639 crossrefType "journal-article" @default.
- W246163639 hasAuthorship W246163639A5074056648 @default.
- W246163639 hasBestOaLocation W2461636391 @default.
- W246163639 hasConcept C121332964 @default.
- W246163639 hasConcept C123958593 @default.
- W246163639 hasConcept C134306372 @default.
- W246163639 hasConcept C139609574 @default.
- W246163639 hasConcept C151376022 @default.
- W246163639 hasConcept C158622935 @default.
- W246163639 hasConcept C171326582 @default.
- W246163639 hasConcept C179603306 @default.
- W246163639 hasConcept C197875053 @default.
- W246163639 hasConcept C201801670 @default.
- W246163639 hasConcept C207467116 @default.
- W246163639 hasConcept C2524010 @default.
- W246163639 hasConcept C27016315 @default.
- W246163639 hasConcept C28826006 @default.
- W246163639 hasConcept C33923547 @default.
- W246163639 hasConcept C43321923 @default.
- W246163639 hasConcept C48753275 @default.
- W246163639 hasConcept C52704855 @default.
- W246163639 hasConcept C62520636 @default.
- W246163639 hasConcept C85189116 @default.
- W246163639 hasConcept C90119067 @default.
- W246163639 hasConceptScore W246163639C121332964 @default.
- W246163639 hasConceptScore W246163639C123958593 @default.
- W246163639 hasConceptScore W246163639C134306372 @default.
- W246163639 hasConceptScore W246163639C139609574 @default.
- W246163639 hasConceptScore W246163639C151376022 @default.
- W246163639 hasConceptScore W246163639C158622935 @default.
- W246163639 hasConceptScore W246163639C171326582 @default.
- W246163639 hasConceptScore W246163639C179603306 @default.
- W246163639 hasConceptScore W246163639C197875053 @default.
- W246163639 hasConceptScore W246163639C201801670 @default.
- W246163639 hasConceptScore W246163639C207467116 @default.
- W246163639 hasConceptScore W246163639C2524010 @default.
- W246163639 hasConceptScore W246163639C27016315 @default.
- W246163639 hasConceptScore W246163639C28826006 @default.
- W246163639 hasConceptScore W246163639C33923547 @default.
- W246163639 hasConceptScore W246163639C43321923 @default.
- W246163639 hasConceptScore W246163639C48753275 @default.
- W246163639 hasConceptScore W246163639C52704855 @default.
- W246163639 hasConceptScore W246163639C62520636 @default.
- W246163639 hasConceptScore W246163639C85189116 @default.
- W246163639 hasConceptScore W246163639C90119067 @default.
- W246163639 hasFunder F4320306076 @default.
- W246163639 hasLocation W2461636391 @default.
- W246163639 hasOpenAccess W246163639 @default.
- W246163639 hasPrimaryLocation W2461636391 @default.
- W246163639 hasRelatedWork W1999502879 @default.
- W246163639 hasRelatedWork W2006799254 @default.
- W246163639 hasRelatedWork W2025388459 @default.
- W246163639 hasRelatedWork W2045561286 @default.
- W246163639 hasRelatedWork W2140726008 @default.
- W246163639 hasRelatedWork W2158121478 @default.
- W246163639 hasRelatedWork W2376482113 @default.
- W246163639 hasRelatedWork W246163639 @default.
- W246163639 hasRelatedWork W317612148 @default.
- W246163639 hasRelatedWork W2412578807 @default.
- W246163639 hasVolume "196" @default.
- W246163639 isParatext "false" @default.
- W246163639 isRetracted "false" @default.
- W246163639 magId "246163639" @default.
- W246163639 workType "article" @default.