Matches in SemOpenAlex for { <https://semopenalex.org/work/W2461794327> ?p ?o ?g. }
- W2461794327 endingPage "327" @default.
- W2461794327 startingPage "313" @default.
- W2461794327 abstract "Two ion-exchange membranes possessing perfluorinated backbone and sulfonic groups (i.e. Nafion® 120 and IonClad™ R4010) with lithium(I) counter-ions were investigated. The interactions between solvents of different polarity and the ion-exchange membranes with various morphologies were taken into account in order to better understand solvation and dissociation phenomena of the ion-pairs. Pervaporation of polar (i.e. water, methanol)–nonpolar (i.e. methyl acetate, dimethyl carbonate) liquid mixtures was carried out. It was revealed that the increase of the polar component concentration above 2 wt% in the feed mixture leads to dissociation of ion-pairs in Nafion membrane, which is reflected by the rapid increase of the polar component partial flux. In the case of IonClad membrane the dissociation of the ion-pairs during pervaporation was observed only when water was a polar feed component. The dissociation of ion-pairs was also evidenced in infrared study by observing the shift of symmetric stretching vibrations (νs) bands of sulfonic groups to the lower wavenumbers, compared to the membrane in the dry state. The symmetric stretching vibrations (νs) bands of the dry Nafion membrane and membrane solvated with water and methanol were equal to 1071 cm−1, 1058 cm−1, and 1054 cm−1, respectively. In the case of IonClad membrane the symmetric stretching vibration (νs) bands changed in contact with water from 1047 cm−1 (dry membrane) to 1037 cm−1. The dissociation of the ion-pairs did not occur in IonClad membrane equilibrated with methanol, which is also consistent with the result obtained during pervaporation." @default.
- W2461794327 created "2016-07-22" @default.
- W2461794327 creator A5023760455 @default.
- W2461794327 creator A5024032860 @default.
- W2461794327 creator A5058514139 @default.
- W2461794327 creator A5061385317 @default.
- W2461794327 creator A5069036338 @default.
- W2461794327 creator A5072071538 @default.
- W2461794327 creator A5077925911 @default.
- W2461794327 creator A5085137815 @default.
- W2461794327 date "2016-11-01" @default.
- W2461794327 modified "2023-10-18" @default.
- W2461794327 title "Effect of the polar–nonpolar liquid mixtures on pervaporative behavior of perfluorinated sulfonic membranes in lithium form" @default.
- W2461794327 cites W1169088255 @default.
- W2461794327 cites W1234080023 @default.
- W2461794327 cites W1528089755 @default.
- W2461794327 cites W1627234549 @default.
- W2461794327 cites W1939582910 @default.
- W2461794327 cites W1965140449 @default.
- W2461794327 cites W1967535506 @default.
- W2461794327 cites W1968290199 @default.
- W2461794327 cites W1968451452 @default.
- W2461794327 cites W1981108141 @default.
- W2461794327 cites W1981325641 @default.
- W2461794327 cites W1984388998 @default.
- W2461794327 cites W1984416596 @default.
- W2461794327 cites W1985997100 @default.
- W2461794327 cites W1987506011 @default.
- W2461794327 cites W1998686847 @default.
- W2461794327 cites W2003914137 @default.
- W2461794327 cites W2004769548 @default.
- W2461794327 cites W2005994004 @default.
- W2461794327 cites W2007532838 @default.
- W2461794327 cites W2007816738 @default.
- W2461794327 cites W2008662569 @default.
- W2461794327 cites W2010021285 @default.
- W2461794327 cites W2017946416 @default.
- W2461794327 cites W2018400920 @default.
- W2461794327 cites W2019169960 @default.
- W2461794327 cites W2019266226 @default.
- W2461794327 cites W2019875521 @default.
- W2461794327 cites W2023340347 @default.
- W2461794327 cites W2025051995 @default.
- W2461794327 cites W2025346738 @default.
- W2461794327 cites W2025737273 @default.
- W2461794327 cites W2029918274 @default.
- W2461794327 cites W2031402878 @default.
- W2461794327 cites W2033240476 @default.
- W2461794327 cites W2034884519 @default.
- W2461794327 cites W2034941277 @default.
- W2461794327 cites W2036144821 @default.
- W2461794327 cites W2038387161 @default.
- W2461794327 cites W2042948130 @default.
- W2461794327 cites W2044902056 @default.
- W2461794327 cites W2050278976 @default.
- W2461794327 cites W2051123263 @default.
- W2461794327 cites W2055827810 @default.
- W2461794327 cites W2056951909 @default.
- W2461794327 cites W2057762046 @default.
- W2461794327 cites W2063083176 @default.
- W2461794327 cites W2067433289 @default.
- W2461794327 cites W2070391871 @default.
- W2461794327 cites W2072567820 @default.
- W2461794327 cites W2074702329 @default.
- W2461794327 cites W2077598295 @default.
- W2461794327 cites W2079432609 @default.
- W2461794327 cites W2079718742 @default.
- W2461794327 cites W2081062432 @default.
- W2461794327 cites W2081828162 @default.
- W2461794327 cites W2081974234 @default.
- W2461794327 cites W2083327809 @default.
- W2461794327 cites W2085021670 @default.
- W2461794327 cites W2086871054 @default.
- W2461794327 cites W2089575140 @default.
- W2461794327 cites W2090798640 @default.
- W2461794327 cites W2092134052 @default.
- W2461794327 cites W2093164892 @default.
- W2461794327 cites W2094255943 @default.
- W2461794327 cites W2115461900 @default.
- W2461794327 cites W2120616697 @default.
- W2461794327 cites W2127491212 @default.
- W2461794327 cites W2142100982 @default.
- W2461794327 cites W2143942719 @default.
- W2461794327 cites W2145556107 @default.
- W2461794327 cites W2154730321 @default.
- W2461794327 cites W2159898685 @default.
- W2461794327 cites W2171260442 @default.
- W2461794327 cites W2303273533 @default.
- W2461794327 cites W2313178701 @default.
- W2461794327 cites W2342206232 @default.
- W2461794327 cites W2343297266 @default.
- W2461794327 cites W2343682849 @default.
- W2461794327 cites W4232204476 @default.
- W2461794327 cites W4236152927 @default.
- W2461794327 cites W4255970315 @default.
- W2461794327 cites W973429649 @default.
- W2461794327 doi "https://doi.org/10.1016/j.memsci.2016.07.008" @default.
- W2461794327 hasPublicationYear "2016" @default.