Matches in SemOpenAlex for { <https://semopenalex.org/work/W2462258553> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2462258553 abstract "Makalah ini membahas tentang pengenalan simbol-simbol Jarimatika menggunakan Jaringan Syaraf Tiruan (JST). Hasil penelitian ini dapat digunakan untuk pengembangan aplikasi perhitungan Jarimatika dan interaksi antara manusia dan komputer yang lebih natural. Segmentasi yang digunakan adalah orientasi histogram, algoritma JST yang digunakan adalah back propagation multi-layer perceptron. Layer-layer JST tersebut adalah satu layer input, satu hidden layer dan satu output layer. Penelitian ini betujuan untuk implementasi pengenalan pola simbol Jarimatika menggunakan JST multi-layer perceptron, implementasi harus mampu menghasilkan klasifikasi dengan benar, sistem harus mampu melakukan klasifikasi dari gambar statis, sehingga dapat menganalisa pengenalan gestur tangan dari simbol-simbol Jarimatika.Penelitian ini menggunakan 18 simbol dasar Jarimatika. Total citra yang digunakan adalah 360 yang terbagi atas 270 citra untuk training dan 90 citra untuk testing. Hasil penelitian ini menunjukkan bahwa JST multi-perceptron dapat digunakan untuk pengenalan simbol Jarimatika dengan akurasi 93.33%. Jumlah neuron yang optimal pada hidden layer adalah 725. Implementasi penelitian ini menggunakan Matlab versi 7 (R2010a).This paper focuses on the recognition of Jarimatika symbols using Artificial Neural Network (ANN). The results of this research can be used to develop applications for the Jarimatika and to make interaction between humans and computers more natural. The Segmentation used is orientation histograms, the ANN algorithm used is back propagation multi-layer perceptron. Th layers of the ANN are one input layer with 19 data, one hidden layer and one output layer. This research aims to implement Jarimatika symbols with pattern recognition and multi-layer perceptron algoritm, the implementation must be able to produce the correct classification, the system must be able to perform the classification of static images, so can analyze the recognition of hand gestures from Jarimatika symbols. This research uses 18 basic Jarimatika symbols. Total image used were 360, consisting of 270 images for training and 90 images for testing. The results of this study indicate that the multi-layer perceptron ANN can be used for recognition of Jarimatika symbols with accuracy 93.33%. The optimal number of neurons in the hidden layer is 725. Implementation of this research using Matlab version 7 (R2010a)." @default.
- W2462258553 created "2016-07-22" @default.
- W2462258553 creator A5028278845 @default.
- W2462258553 creator A5059898726 @default.
- W2462258553 date "2015-04-02" @default.
- W2462258553 modified "2023-09-26" @default.
- W2462258553 title "Pengenalan Simbol Jarimatika Menggunakan Orientasi Histogram dan Multi-layer Perceptron" @default.
- W2462258553 cites W1491222902 @default.
- W2462258553 cites W1527737189 @default.
- W2462258553 cites W1530857569 @default.
- W2462258553 cites W1574424760 @default.
- W2462258553 cites W1585527901 @default.
- W2462258553 cites W1857636847 @default.
- W2462258553 cites W1910567995 @default.
- W2462258553 cites W1967475838 @default.
- W2462258553 cites W1973236436 @default.
- W2462258553 cites W1996394789 @default.
- W2462258553 cites W2032196160 @default.
- W2462258553 cites W2049253164 @default.
- W2462258553 cites W2069643358 @default.
- W2462258553 cites W2073140603 @default.
- W2462258553 cites W2093713168 @default.
- W2462258553 cites W2096384811 @default.
- W2462258553 cites W2101927907 @default.
- W2462258553 cites W2104061672 @default.
- W2462258553 cites W2107012990 @default.
- W2462258553 cites W2112566529 @default.
- W2462258553 cites W2113719060 @default.
- W2462258553 cites W2116494851 @default.
- W2462258553 cites W2117407653 @default.
- W2462258553 cites W2124619563 @default.
- W2462258553 cites W2125838338 @default.
- W2462258553 cites W2128859583 @default.
- W2462258553 cites W2146141351 @default.
- W2462258553 cites W2162264926 @default.
- W2462258553 cites W2164873621 @default.
- W2462258553 cites W2166436112 @default.
- W2462258553 cites W2166489171 @default.
- W2462258553 cites W2167519492 @default.
- W2462258553 cites W2168392347 @default.
- W2462258553 cites W2169223936 @default.
- W2462258553 cites W3023540311 @default.
- W2462258553 cites W1525823815 @default.
- W2462258553 cites W152822935 @default.
- W2462258553 doi "https://doi.org/10.24076/citec.2014v1i4.32" @default.
- W2462258553 hasPublicationYear "2015" @default.
- W2462258553 type Work @default.
- W2462258553 sameAs 2462258553 @default.
- W2462258553 citedByCount "0" @default.
- W2462258553 crossrefType "journal-article" @default.
- W2462258553 hasAuthorship W2462258553A5028278845 @default.
- W2462258553 hasAuthorship W2462258553A5059898726 @default.
- W2462258553 hasBestOaLocation W24622585531 @default.
- W2462258553 hasConcept C115961682 @default.
- W2462258553 hasConcept C153180895 @default.
- W2462258553 hasConcept C154945302 @default.
- W2462258553 hasConcept C178790620 @default.
- W2462258553 hasConcept C179717631 @default.
- W2462258553 hasConcept C185592680 @default.
- W2462258553 hasConcept C2779227376 @default.
- W2462258553 hasConcept C41008148 @default.
- W2462258553 hasConcept C50644808 @default.
- W2462258553 hasConcept C53533937 @default.
- W2462258553 hasConcept C60908668 @default.
- W2462258553 hasConceptScore W2462258553C115961682 @default.
- W2462258553 hasConceptScore W2462258553C153180895 @default.
- W2462258553 hasConceptScore W2462258553C154945302 @default.
- W2462258553 hasConceptScore W2462258553C178790620 @default.
- W2462258553 hasConceptScore W2462258553C179717631 @default.
- W2462258553 hasConceptScore W2462258553C185592680 @default.
- W2462258553 hasConceptScore W2462258553C2779227376 @default.
- W2462258553 hasConceptScore W2462258553C41008148 @default.
- W2462258553 hasConceptScore W2462258553C50644808 @default.
- W2462258553 hasConceptScore W2462258553C53533937 @default.
- W2462258553 hasConceptScore W2462258553C60908668 @default.
- W2462258553 hasLocation W24622585531 @default.
- W2462258553 hasOpenAccess W2462258553 @default.
- W2462258553 hasPrimaryLocation W24622585531 @default.
- W2462258553 isParatext "false" @default.
- W2462258553 isRetracted "false" @default.
- W2462258553 magId "2462258553" @default.
- W2462258553 workType "article" @default.