Matches in SemOpenAlex for { <https://semopenalex.org/work/W2462353227> ?p ?o ?g. }
- W2462353227 endingPage "6006" @default.
- W2462353227 startingPage "5993" @default.
- W2462353227 abstract "Designing a kernel function with good discriminating ability and a highly application-adaptive kernelized classifier is the key of many kernel methods. However, not many kernel functions combining directly the bitemporal images' information are designed specifically for change detection tasks. In addition, extreme learning machine (ELM) has not found wide applications in change detection tasks, even though it is a potential kernel method possessing outstanding approximation and generalization capabilities as well as great classification accuracy and efficiency. Therefore, an approach relying on a difference correlation kernel (DCK) and a multistage ELM (MS-ELM) is proposed in this paper for synthetic aperture radar (SAR) image change detection. First, a DCK function is constructed specifically for change detection by measuring the “distance” between any two pixels. The DCK function depicts the cross-time similarities between couples of bitemporal image patches at any cyclic shifts with a kernel correlation operation and the high-order spatial distances between two differently located pixels with an algebraic subtraction. The DCK function possesses strong noise immunity and good identification of changed areas simultaneously. Second, an MS-ELM classifier is constructed for obtaining the change detection result. In MS-ELM, the hidden nodes and weights between the hidden and output layers are updated stage by stage by improving the kernel functions that compose them. Each stage of the MS-ELM is a standard kernel-ELM, and the DCK function is utilized in the first stage. The regenerative kernel functions incorporate the output spatial-neighborhood information of the previous stage for enhancing remarkably the MS-ELM's discriminating ability and noise resistance. The converged result at the last stage of MS-ELM is the final change detection result. Experiments on real SAR image change detection demonstrate the effectiveness of the DCK function and the MS-ELM algorithm, particularly its good identification of changed areas and strong robustness against noise in SAR images." @default.
- W2462353227 created "2016-07-22" @default.
- W2462353227 creator A5010555402 @default.
- W2462353227 creator A5021384155 @default.
- W2462353227 creator A5046320247 @default.
- W2462353227 creator A5088683171 @default.
- W2462353227 date "2016-10-01" @default.
- W2462353227 modified "2023-10-18" @default.
- W2462353227 title "SAR Image Change Detection Based on Correlation Kernel and Multistage Extreme Learning Machine" @default.
- W2462353227 cites W1510073064 @default.
- W2462353227 cites W1963994432 @default.
- W2462353227 cites W1964967908 @default.
- W2462353227 cites W1980713635 @default.
- W2462353227 cites W1980961373 @default.
- W2462353227 cites W1990938413 @default.
- W2462353227 cites W2001536813 @default.
- W2462353227 cites W2025785651 @default.
- W2462353227 cites W2026131661 @default.
- W2462353227 cites W2027350727 @default.
- W2462353227 cites W2029711068 @default.
- W2462353227 cites W2036798369 @default.
- W2462353227 cites W2038393286 @default.
- W2462353227 cites W2042141552 @default.
- W2462353227 cites W2042184006 @default.
- W2462353227 cites W2060225369 @default.
- W2462353227 cites W2069522573 @default.
- W2462353227 cites W2078622091 @default.
- W2462353227 cites W2080895302 @default.
- W2462353227 cites W2083900990 @default.
- W2462353227 cites W2086611999 @default.
- W2462353227 cites W2087828778 @default.
- W2462353227 cites W2108995755 @default.
- W2462353227 cites W2110519070 @default.
- W2462353227 cites W2111787810 @default.
- W2462353227 cites W2121971770 @default.
- W2462353227 cites W2126176832 @default.
- W2462353227 cites W2141695047 @default.
- W2462353227 cites W2146954163 @default.
- W2462353227 cites W2154889144 @default.
- W2462353227 cites W2157100165 @default.
- W2462353227 cites W2168618665 @default.
- W2462353227 doi "https://doi.org/10.1109/tgrs.2016.2578438" @default.
- W2462353227 hasPublicationYear "2016" @default.
- W2462353227 type Work @default.
- W2462353227 sameAs 2462353227 @default.
- W2462353227 citedByCount "27" @default.
- W2462353227 countsByYear W24623532272017 @default.
- W2462353227 countsByYear W24623532272018 @default.
- W2462353227 countsByYear W24623532272019 @default.
- W2462353227 countsByYear W24623532272020 @default.
- W2462353227 countsByYear W24623532272021 @default.
- W2462353227 countsByYear W24623532272022 @default.
- W2462353227 countsByYear W24623532272023 @default.
- W2462353227 crossrefType "journal-article" @default.
- W2462353227 hasAuthorship W2462353227A5010555402 @default.
- W2462353227 hasAuthorship W2462353227A5021384155 @default.
- W2462353227 hasAuthorship W2462353227A5046320247 @default.
- W2462353227 hasAuthorship W2462353227A5088683171 @default.
- W2462353227 hasConcept C11413529 @default.
- W2462353227 hasConcept C114614502 @default.
- W2462353227 hasConcept C122280245 @default.
- W2462353227 hasConcept C12267149 @default.
- W2462353227 hasConcept C153180895 @default.
- W2462353227 hasConcept C154945302 @default.
- W2462353227 hasConcept C160633673 @default.
- W2462353227 hasConcept C2780150128 @default.
- W2462353227 hasConcept C31972630 @default.
- W2462353227 hasConcept C33923547 @default.
- W2462353227 hasConcept C41008148 @default.
- W2462353227 hasConcept C50644808 @default.
- W2462353227 hasConcept C74193536 @default.
- W2462353227 hasConcept C75866337 @default.
- W2462353227 hasConcept C87360688 @default.
- W2462353227 hasConceptScore W2462353227C11413529 @default.
- W2462353227 hasConceptScore W2462353227C114614502 @default.
- W2462353227 hasConceptScore W2462353227C122280245 @default.
- W2462353227 hasConceptScore W2462353227C12267149 @default.
- W2462353227 hasConceptScore W2462353227C153180895 @default.
- W2462353227 hasConceptScore W2462353227C154945302 @default.
- W2462353227 hasConceptScore W2462353227C160633673 @default.
- W2462353227 hasConceptScore W2462353227C2780150128 @default.
- W2462353227 hasConceptScore W2462353227C31972630 @default.
- W2462353227 hasConceptScore W2462353227C33923547 @default.
- W2462353227 hasConceptScore W2462353227C41008148 @default.
- W2462353227 hasConceptScore W2462353227C50644808 @default.
- W2462353227 hasConceptScore W2462353227C74193536 @default.
- W2462353227 hasConceptScore W2462353227C75866337 @default.
- W2462353227 hasConceptScore W2462353227C87360688 @default.
- W2462353227 hasFunder F4320321001 @default.
- W2462353227 hasFunder F4320336024 @default.
- W2462353227 hasIssue "10" @default.
- W2462353227 hasLocation W24623532271 @default.
- W2462353227 hasOpenAccess W2462353227 @default.
- W2462353227 hasPrimaryLocation W24623532271 @default.
- W2462353227 hasRelatedWork W2097028249 @default.
- W2462353227 hasRelatedWork W2108482774 @default.
- W2462353227 hasRelatedWork W2136184105 @default.
- W2462353227 hasRelatedWork W2137362393 @default.