Matches in SemOpenAlex for { <https://semopenalex.org/work/W2463516922> ?p ?o ?g. }
- W2463516922 endingPage "180" @default.
- W2463516922 startingPage "169" @default.
- W2463516922 abstract "Traffic congestion is a condition of a segment in the road network where the traffic demand is greater than the available road capacity. The detection of unusual traffic patterns including congestions is a significant research problem in the data mining and knowledge discovery community. However, to the best of our knowledge, the discovery of propagations, or causal interactions among detected traffic congestions has not been appropriately investigated before. In this research, we introduce algorithms which construct causality trees from congestions and estimate their propagation probabilities based on temporal and spatial information of the congestions. Frequent sub-structures of these causality trees reveal not only recurring interactions among spatio-temporal congestions, but potential bottlenecks or flaws in the designs of existing traffic networks. Our algorithms have been validated by experiments on a travel time data set recorded from an urban road network." @default.
- W2463516922 created "2016-07-22" @default.
- W2463516922 creator A5015082478 @default.
- W2463516922 creator A5032114119 @default.
- W2463516922 creator A5071037763 @default.
- W2463516922 date "2017-06-01" @default.
- W2463516922 modified "2023-10-07" @default.
- W2463516922 title "Discovering Congestion Propagation Patterns in Spatio-Temporal Traffic Data" @default.
- W2463516922 cites W1523883781 @default.
- W2463516922 cites W1568586930 @default.
- W2463516922 cites W1574447377 @default.
- W2463516922 cites W1824823925 @default.
- W2463516922 cites W1966793427 @default.
- W2463516922 cites W1973684765 @default.
- W2463516922 cites W1981398125 @default.
- W2463516922 cites W1984272626 @default.
- W2463516922 cites W1993264576 @default.
- W2463516922 cites W1994745671 @default.
- W2463516922 cites W1995814506 @default.
- W2463516922 cites W1999432478 @default.
- W2463516922 cites W2009797633 @default.
- W2463516922 cites W2009916696 @default.
- W2463516922 cites W2011809582 @default.
- W2463516922 cites W2029436115 @default.
- W2463516922 cites W2029902517 @default.
- W2463516922 cites W2032549372 @default.
- W2463516922 cites W2038314149 @default.
- W2463516922 cites W2051148835 @default.
- W2463516922 cites W2052947566 @default.
- W2463516922 cites W2069416420 @default.
- W2463516922 cites W2073209910 @default.
- W2463516922 cites W2080180737 @default.
- W2463516922 cites W2084335476 @default.
- W2463516922 cites W2088346012 @default.
- W2463516922 cites W2093855404 @default.
- W2463516922 cites W2098086436 @default.
- W2463516922 cites W2099570021 @default.
- W2463516922 cites W2112738128 @default.
- W2463516922 cites W2117294975 @default.
- W2463516922 cites W2117618130 @default.
- W2463516922 cites W2118371392 @default.
- W2463516922 cites W2136915294 @default.
- W2463516922 cites W2143428876 @default.
- W2463516922 cites W2145039203 @default.
- W2463516922 cites W2156393949 @default.
- W2463516922 cites W2167192193 @default.
- W2463516922 cites W2257812508 @default.
- W2463516922 cites W4231690667 @default.
- W2463516922 doi "https://doi.org/10.1109/tbdata.2016.2587669" @default.
- W2463516922 hasPublicationYear "2017" @default.
- W2463516922 type Work @default.
- W2463516922 sameAs 2463516922 @default.
- W2463516922 citedByCount "78" @default.
- W2463516922 countsByYear W24635169222016 @default.
- W2463516922 countsByYear W24635169222017 @default.
- W2463516922 countsByYear W24635169222018 @default.
- W2463516922 countsByYear W24635169222019 @default.
- W2463516922 countsByYear W24635169222020 @default.
- W2463516922 countsByYear W24635169222021 @default.
- W2463516922 countsByYear W24635169222022 @default.
- W2463516922 countsByYear W24635169222023 @default.
- W2463516922 crossrefType "journal-article" @default.
- W2463516922 hasAuthorship W2463516922A5015082478 @default.
- W2463516922 hasAuthorship W2463516922A5032114119 @default.
- W2463516922 hasAuthorship W2463516922A5071037763 @default.
- W2463516922 hasBestOaLocation W24635169222 @default.
- W2463516922 hasConcept C121332964 @default.
- W2463516922 hasConcept C124101348 @default.
- W2463516922 hasConcept C127413603 @default.
- W2463516922 hasConcept C177264268 @default.
- W2463516922 hasConcept C199360897 @default.
- W2463516922 hasConcept C22212356 @default.
- W2463516922 hasConcept C2779888511 @default.
- W2463516922 hasConcept C2780801425 @default.
- W2463516922 hasConcept C31258907 @default.
- W2463516922 hasConcept C41008148 @default.
- W2463516922 hasConcept C62520636 @default.
- W2463516922 hasConcept C64093975 @default.
- W2463516922 hasConcept C64357122 @default.
- W2463516922 hasConceptScore W2463516922C121332964 @default.
- W2463516922 hasConceptScore W2463516922C124101348 @default.
- W2463516922 hasConceptScore W2463516922C127413603 @default.
- W2463516922 hasConceptScore W2463516922C177264268 @default.
- W2463516922 hasConceptScore W2463516922C199360897 @default.
- W2463516922 hasConceptScore W2463516922C22212356 @default.
- W2463516922 hasConceptScore W2463516922C2779888511 @default.
- W2463516922 hasConceptScore W2463516922C2780801425 @default.
- W2463516922 hasConceptScore W2463516922C31258907 @default.
- W2463516922 hasConceptScore W2463516922C41008148 @default.
- W2463516922 hasConceptScore W2463516922C62520636 @default.
- W2463516922 hasConceptScore W2463516922C64093975 @default.
- W2463516922 hasConceptScore W2463516922C64357122 @default.
- W2463516922 hasIssue "2" @default.
- W2463516922 hasLocation W24635169221 @default.
- W2463516922 hasLocation W24635169222 @default.
- W2463516922 hasOpenAccess W2463516922 @default.
- W2463516922 hasPrimaryLocation W24635169221 @default.
- W2463516922 hasRelatedWork W1969324738 @default.