Matches in SemOpenAlex for { <https://semopenalex.org/work/W2464242574> ?p ?o ?g. }
- W2464242574 endingPage "549" @default.
- W2464242574 startingPage "537" @default.
- W2464242574 abstract "Measuring and differentiating effective and ineffective porosity in oil- and gas-shale remains a challenging step in the calculation of hydrocarbon reserves. Shale composition, typically dominated by clay minerals and organic matter (OM), forms a complex pore system, making the proportion between effective and ineffective porosity variable and difficult to determine in the course of porosity measurement. In this study, total porosity was measured from a set of rock chips using both light kerosene (kerosene immersion porosimetry-KIP) and deionized (DI) water (water immersion porosimetry-WIP) as saturation-immersion fluids. Both KIP and WIP measurements were performed on samples equilibrated at 40% and 80% relative humidity (RH) and combined with water adsorption isotherms to estimate the range of clay-bound water (CBW). A combination of these procedures, and the use of kerosene and water as the saturation-immersion fluids, is hereafter called dual-liquid porosimetry (DLP). To test the method, two different burial diagenetic sequences of mudstone with different mineralogy and OM content were used. The results demonstrate that all the porosity values show a consistent declining trend with depth regardless of sample origin and type of saturation-immersion fluid used in the measurement process. Samples saturated with DI water were susceptible to swelling and the swelling decreased with sample depth, maturation and cementation, and increased with illite-smectite mineral content and degree of expandability. A consistently lower calculated grain density for KIP samples compared with WIP samples reflected incomplete pore saturation by kerosene. Kerosene saturation can be restricted by the presence of residual water that blocks kerosene pathways to small pores. This limitation, however, reflects geologic formation conditions making KIP measurement a good approximation for maximum liquid hydrocarbon-available porosity. Equilibrating the rock chips at 40% and 80% RH provides a rapid evaluation of the range of CBW that may represent ineffective porosity under various formation conditions. CBWmin (40% RH) constitutes roughly 1W–2W smectite equivalent layers and gives an estimation of bound water close to high hydrocarbon saturation. CBWmax (80% RH) represents the maximum possible bound water content in formations with higher water saturation. For samples, with low porosity and a significant content of expandable clay minerals and cation exchange capacity, CBW can constitute up to 100% of rock porosity. In order to avoid the limitations and assumptions of WIP (swelling) and KIP (incomplete saturation of nanopores), a combination of grain density and bulk density measured by WIP and KIP, respectively, was proposed. The paper further tests and discusses the pitfalls of saturation-immersion techniques." @default.
- W2464242574 created "2016-07-22" @default.
- W2464242574 creator A5042836948 @default.
- W2464242574 creator A5044237370 @default.
- W2464242574 creator A5045129342 @default.
- W2464242574 creator A5052125349 @default.
- W2464242574 creator A5091368251 @default.
- W2464242574 date "2016-11-01" @default.
- W2464242574 modified "2023-09-25" @default.
- W2464242574 title "Dual liquid porosimetry: A porosity measurement technique for oil- and gas-bearing shales" @default.
- W2464242574 cites W1499674039 @default.
- W2464242574 cites W1938651687 @default.
- W2464242574 cites W1972713987 @default.
- W2464242574 cites W1991168720 @default.
- W2464242574 cites W1999384868 @default.
- W2464242574 cites W1999577832 @default.
- W2464242574 cites W2002378539 @default.
- W2464242574 cites W2003154830 @default.
- W2464242574 cites W2011254969 @default.
- W2464242574 cites W2014642455 @default.
- W2464242574 cites W2024659512 @default.
- W2464242574 cites W2025181343 @default.
- W2464242574 cites W2025224217 @default.
- W2464242574 cites W2025571826 @default.
- W2464242574 cites W2026953006 @default.
- W2464242574 cites W2038325942 @default.
- W2464242574 cites W2058508209 @default.
- W2464242574 cites W2061571056 @default.
- W2464242574 cites W2067364908 @default.
- W2464242574 cites W2074579280 @default.
- W2464242574 cites W2075147434 @default.
- W2464242574 cites W2076366003 @default.
- W2464242574 cites W2098496196 @default.
- W2464242574 cites W2103212314 @default.
- W2464242574 cites W2117070510 @default.
- W2464242574 cites W2122316263 @default.
- W2464242574 cites W2122606855 @default.
- W2464242574 cites W2125181710 @default.
- W2464242574 cites W2130519837 @default.
- W2464242574 cites W2150586733 @default.
- W2464242574 cites W2158897778 @default.
- W2464242574 cites W2294612594 @default.
- W2464242574 cites W2319933522 @default.
- W2464242574 cites W2338381811 @default.
- W2464242574 doi "https://doi.org/10.1016/j.fuel.2016.06.102" @default.
- W2464242574 hasPublicationYear "2016" @default.
- W2464242574 type Work @default.
- W2464242574 sameAs 2464242574 @default.
- W2464242574 citedByCount "31" @default.
- W2464242574 countsByYear W24642425742016 @default.
- W2464242574 countsByYear W24642425742017 @default.
- W2464242574 countsByYear W24642425742018 @default.
- W2464242574 countsByYear W24642425742019 @default.
- W2464242574 countsByYear W24642425742020 @default.
- W2464242574 countsByYear W24642425742021 @default.
- W2464242574 countsByYear W24642425742022 @default.
- W2464242574 countsByYear W24642425742023 @default.
- W2464242574 crossrefType "journal-article" @default.
- W2464242574 hasAuthorship W2464242574A5042836948 @default.
- W2464242574 hasAuthorship W2464242574A5044237370 @default.
- W2464242574 hasAuthorship W2464242574A5045129342 @default.
- W2464242574 hasAuthorship W2464242574A5052125349 @default.
- W2464242574 hasAuthorship W2464242574A5091368251 @default.
- W2464242574 hasConcept C105569014 @default.
- W2464242574 hasConcept C114614502 @default.
- W2464242574 hasConcept C114873805 @default.
- W2464242574 hasConcept C127313418 @default.
- W2464242574 hasConcept C147789679 @default.
- W2464242574 hasConcept C151730666 @default.
- W2464242574 hasConcept C153127940 @default.
- W2464242574 hasConcept C159985019 @default.
- W2464242574 hasConcept C178790620 @default.
- W2464242574 hasConcept C185592680 @default.
- W2464242574 hasConcept C192562407 @default.
- W2464242574 hasConcept C199289684 @default.
- W2464242574 hasConcept C2778192735 @default.
- W2464242574 hasConcept C33923547 @default.
- W2464242574 hasConcept C40212044 @default.
- W2464242574 hasConcept C6648577 @default.
- W2464242574 hasConcept C88380143 @default.
- W2464242574 hasConcept C9930424 @default.
- W2464242574 hasConceptScore W2464242574C105569014 @default.
- W2464242574 hasConceptScore W2464242574C114614502 @default.
- W2464242574 hasConceptScore W2464242574C114873805 @default.
- W2464242574 hasConceptScore W2464242574C127313418 @default.
- W2464242574 hasConceptScore W2464242574C147789679 @default.
- W2464242574 hasConceptScore W2464242574C151730666 @default.
- W2464242574 hasConceptScore W2464242574C153127940 @default.
- W2464242574 hasConceptScore W2464242574C159985019 @default.
- W2464242574 hasConceptScore W2464242574C178790620 @default.
- W2464242574 hasConceptScore W2464242574C185592680 @default.
- W2464242574 hasConceptScore W2464242574C192562407 @default.
- W2464242574 hasConceptScore W2464242574C199289684 @default.
- W2464242574 hasConceptScore W2464242574C2778192735 @default.
- W2464242574 hasConceptScore W2464242574C33923547 @default.
- W2464242574 hasConceptScore W2464242574C40212044 @default.
- W2464242574 hasConceptScore W2464242574C6648577 @default.
- W2464242574 hasConceptScore W2464242574C88380143 @default.