Matches in SemOpenAlex for { <https://semopenalex.org/work/W2465108587> ?p ?o ?g. }
- W2465108587 abstract "Large-pose face alignment is a very challenging problem in computer vision, which is used as a prerequisite for many important vision tasks, e.g, face recognition and 3D face reconstruction. Recently, there have been a few attempts to solve this problem, but still more research is needed to achieve highly accurate results. In this paper, we propose a face alignment method for large-pose face images, by combining the powerful cascaded CNN regressor method and 3DMM. We formulate the face alignment as a 3DMM fitting problem, where the camera projection matrix and 3D shape parameters are estimated by a cascade of CNN-based regressors. The dense 3D shape allows us to design pose-invariant appearance features for effective CNN learning. Extensive experiments are conducted on the challenging databases (AFLW and AFW), with comparison to the state of the art." @default.
- W2465108587 created "2016-07-22" @default.
- W2465108587 creator A5063037457 @default.
- W2465108587 creator A5077998492 @default.
- W2465108587 date "2016-06-01" @default.
- W2465108587 modified "2023-10-01" @default.
- W2465108587 title "Large-Pose Face Alignment via CNN-Based Dense 3D Model Fitting" @default.
- W2465108587 cites W1488228643 @default.
- W2465108587 cites W1567532702 @default.
- W2465108587 cites W1682276745 @default.
- W2465108587 cites W1915668717 @default.
- W2465108587 cites W1934410531 @default.
- W2465108587 cites W1940113235 @default.
- W2465108587 cites W1976948919 @default.
- W2465108587 cites W1990937109 @default.
- W2465108587 cites W2012885984 @default.
- W2465108587 cites W2017107803 @default.
- W2465108587 cites W2033419168 @default.
- W2465108587 cites W2046571636 @default.
- W2465108587 cites W2082308025 @default.
- W2465108587 cites W2086331119 @default.
- W2465108587 cites W2090321726 @default.
- W2465108587 cites W2093922090 @default.
- W2465108587 cites W2107037917 @default.
- W2465108587 cites W2111372597 @default.
- W2465108587 cites W2116277445 @default.
- W2465108587 cites W2124750300 @default.
- W2465108587 cites W2129210471 @default.
- W2465108587 cites W2149918784 @default.
- W2465108587 cites W2197128021 @default.
- W2465108587 cites W2214733281 @default.
- W2465108587 cites W2215581249 @default.
- W2465108587 cites W2467255717 @default.
- W2465108587 cites W2544981553 @default.
- W2465108587 doi "https://doi.org/10.1109/cvpr.2016.454" @default.
- W2465108587 hasPublicationYear "2016" @default.
- W2465108587 type Work @default.
- W2465108587 sameAs 2465108587 @default.
- W2465108587 citedByCount "229" @default.
- W2465108587 countsByYear W24651085872016 @default.
- W2465108587 countsByYear W24651085872017 @default.
- W2465108587 countsByYear W24651085872018 @default.
- W2465108587 countsByYear W24651085872019 @default.
- W2465108587 countsByYear W24651085872020 @default.
- W2465108587 countsByYear W24651085872021 @default.
- W2465108587 countsByYear W24651085872022 @default.
- W2465108587 countsByYear W24651085872023 @default.
- W2465108587 crossrefType "proceedings-article" @default.
- W2465108587 hasAuthorship W2465108587A5063037457 @default.
- W2465108587 hasAuthorship W2465108587A5077998492 @default.
- W2465108587 hasConcept C11413529 @default.
- W2465108587 hasConcept C144024400 @default.
- W2465108587 hasConcept C153180895 @default.
- W2465108587 hasConcept C154945302 @default.
- W2465108587 hasConcept C185592680 @default.
- W2465108587 hasConcept C190470478 @default.
- W2465108587 hasConcept C2779304628 @default.
- W2465108587 hasConcept C31510193 @default.
- W2465108587 hasConcept C31972630 @default.
- W2465108587 hasConcept C33923547 @default.
- W2465108587 hasConcept C34146451 @default.
- W2465108587 hasConcept C36289849 @default.
- W2465108587 hasConcept C37914503 @default.
- W2465108587 hasConcept C41008148 @default.
- W2465108587 hasConcept C43617362 @default.
- W2465108587 hasConcept C52102323 @default.
- W2465108587 hasConcept C57493831 @default.
- W2465108587 hasConcept C81363708 @default.
- W2465108587 hasConceptScore W2465108587C11413529 @default.
- W2465108587 hasConceptScore W2465108587C144024400 @default.
- W2465108587 hasConceptScore W2465108587C153180895 @default.
- W2465108587 hasConceptScore W2465108587C154945302 @default.
- W2465108587 hasConceptScore W2465108587C185592680 @default.
- W2465108587 hasConceptScore W2465108587C190470478 @default.
- W2465108587 hasConceptScore W2465108587C2779304628 @default.
- W2465108587 hasConceptScore W2465108587C31510193 @default.
- W2465108587 hasConceptScore W2465108587C31972630 @default.
- W2465108587 hasConceptScore W2465108587C33923547 @default.
- W2465108587 hasConceptScore W2465108587C34146451 @default.
- W2465108587 hasConceptScore W2465108587C36289849 @default.
- W2465108587 hasConceptScore W2465108587C37914503 @default.
- W2465108587 hasConceptScore W2465108587C41008148 @default.
- W2465108587 hasConceptScore W2465108587C43617362 @default.
- W2465108587 hasConceptScore W2465108587C52102323 @default.
- W2465108587 hasConceptScore W2465108587C57493831 @default.
- W2465108587 hasConceptScore W2465108587C81363708 @default.
- W2465108587 hasLocation W24651085871 @default.
- W2465108587 hasOpenAccess W2465108587 @default.
- W2465108587 hasPrimaryLocation W24651085871 @default.
- W2465108587 hasRelatedWork W1533010185 @default.
- W2465108587 hasRelatedWork W1602197757 @default.
- W2465108587 hasRelatedWork W1899364738 @default.
- W2465108587 hasRelatedWork W1984785519 @default.
- W2465108587 hasRelatedWork W2000244654 @default.
- W2465108587 hasRelatedWork W2103413230 @default.
- W2465108587 hasRelatedWork W2156918058 @default.
- W2465108587 hasRelatedWork W2168992377 @default.
- W2465108587 hasRelatedWork W4205555144 @default.
- W2465108587 hasRelatedWork W43171467 @default.
- W2465108587 isParatext "false" @default.