Matches in SemOpenAlex for { <https://semopenalex.org/work/W2465694013> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2465694013 endingPage "1087" @default.
- W2465694013 startingPage "1079" @default.
- W2465694013 abstract "Effective coagulation is essential to achieving drinking water treatment objectives when considering surface water. To minimize settled water turbidity, artificial neural networks (ANNs) have been adopted to predict optimum alum and carbon dioxide dosages at the Elgin Area Water Treatment Plant. ANNs were applied to predict both optimum carbon dioxide and alum dosages with correlation (R2) values of 0.68 and 0.90, respectively. ANNs were also used to developed surface response plots to ease optimum selection of dosage. Trained ANNs were used to predict turbidity outcomes for a range of alum and carbon dioxide dosages and these were compared to historical data. Point-wise confidence intervals were obtained based on error and squared error values during the training process. The probability of the true value falling within the predicted interval ranged from 0.25 to 0.81 and the average interval width ranged from 0.15 to 0.62 NTU. Training an ANN using the squared error produced a larger average interval width, but better probability of a true prediction interval." @default.
- W2465694013 created "2016-07-22" @default.
- W2465694013 creator A5015472466 @default.
- W2465694013 creator A5087145148 @default.
- W2465694013 date "2015-05-23" @default.
- W2465694013 modified "2023-09-27" @default.
- W2465694013 title "Development of artificial neural networks based confidence intervals and response surfaces for the optimization of coagulation performance" @default.
- W2465694013 cites W1966646381 @default.
- W2465694013 cites W1994771526 @default.
- W2465694013 cites W1995772254 @default.
- W2465694013 cites W2016251871 @default.
- W2465694013 cites W2025023253 @default.
- W2465694013 cites W2028070629 @default.
- W2465694013 cites W2051789594 @default.
- W2465694013 cites W2055541671 @default.
- W2465694013 cites W2063046703 @default.
- W2465694013 cites W2077458446 @default.
- W2465694013 cites W2084830753 @default.
- W2465694013 cites W2149006894 @default.
- W2465694013 cites W2171666055 @default.
- W2465694013 cites W2321375660 @default.
- W2465694013 doi "https://doi.org/10.2166/ws.2015.066" @default.
- W2465694013 hasPublicationYear "2015" @default.
- W2465694013 type Work @default.
- W2465694013 sameAs 2465694013 @default.
- W2465694013 citedByCount "5" @default.
- W2465694013 countsByYear W24656940132019 @default.
- W2465694013 countsByYear W24656940132021 @default.
- W2465694013 countsByYear W24656940132022 @default.
- W2465694013 crossrefType "journal-article" @default.
- W2465694013 hasAuthorship W2465694013A5015472466 @default.
- W2465694013 hasAuthorship W2465694013A5087145148 @default.
- W2465694013 hasConcept C105795698 @default.
- W2465694013 hasConcept C114614502 @default.
- W2465694013 hasConcept C118552586 @default.
- W2465694013 hasConcept C119857082 @default.
- W2465694013 hasConcept C139945424 @default.
- W2465694013 hasConcept C178790620 @default.
- W2465694013 hasConcept C185592680 @default.
- W2465694013 hasConcept C18903297 @default.
- W2465694013 hasConcept C2778067643 @default.
- W2465694013 hasConcept C2778382381 @default.
- W2465694013 hasConcept C2780924562 @default.
- W2465694013 hasConcept C33923547 @default.
- W2465694013 hasConcept C39432304 @default.
- W2465694013 hasConcept C41008148 @default.
- W2465694013 hasConcept C44249647 @default.
- W2465694013 hasConcept C50644808 @default.
- W2465694013 hasConcept C530467964 @default.
- W2465694013 hasConcept C64016661 @default.
- W2465694013 hasConcept C71924100 @default.
- W2465694013 hasConcept C86803240 @default.
- W2465694013 hasConceptScore W2465694013C105795698 @default.
- W2465694013 hasConceptScore W2465694013C114614502 @default.
- W2465694013 hasConceptScore W2465694013C118552586 @default.
- W2465694013 hasConceptScore W2465694013C119857082 @default.
- W2465694013 hasConceptScore W2465694013C139945424 @default.
- W2465694013 hasConceptScore W2465694013C178790620 @default.
- W2465694013 hasConceptScore W2465694013C185592680 @default.
- W2465694013 hasConceptScore W2465694013C18903297 @default.
- W2465694013 hasConceptScore W2465694013C2778067643 @default.
- W2465694013 hasConceptScore W2465694013C2778382381 @default.
- W2465694013 hasConceptScore W2465694013C2780924562 @default.
- W2465694013 hasConceptScore W2465694013C33923547 @default.
- W2465694013 hasConceptScore W2465694013C39432304 @default.
- W2465694013 hasConceptScore W2465694013C41008148 @default.
- W2465694013 hasConceptScore W2465694013C44249647 @default.
- W2465694013 hasConceptScore W2465694013C50644808 @default.
- W2465694013 hasConceptScore W2465694013C530467964 @default.
- W2465694013 hasConceptScore W2465694013C64016661 @default.
- W2465694013 hasConceptScore W2465694013C71924100 @default.
- W2465694013 hasConceptScore W2465694013C86803240 @default.
- W2465694013 hasIssue "5" @default.
- W2465694013 hasLocation W24656940131 @default.
- W2465694013 hasOpenAccess W2465694013 @default.
- W2465694013 hasPrimaryLocation W24656940131 @default.
- W2465694013 hasRelatedWork W1535642117 @default.
- W2465694013 hasRelatedWork W170177509 @default.
- W2465694013 hasRelatedWork W1966345661 @default.
- W2465694013 hasRelatedWork W2021878122 @default.
- W2465694013 hasRelatedWork W2047374309 @default.
- W2465694013 hasRelatedWork W2586807230 @default.
- W2465694013 hasRelatedWork W2900806881 @default.
- W2465694013 hasRelatedWork W3019622353 @default.
- W2465694013 hasRelatedWork W4213442293 @default.
- W2465694013 hasRelatedWork W2188706696 @default.
- W2465694013 hasVolume "15" @default.
- W2465694013 isParatext "false" @default.
- W2465694013 isRetracted "false" @default.
- W2465694013 magId "2465694013" @default.
- W2465694013 workType "article" @default.