Matches in SemOpenAlex for { <https://semopenalex.org/work/W2465718707> ?p ?o ?g. }
- W2465718707 abstract "Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Timo Hakkarainen Name of the doctoral dissertation Electromagnetic Nanophotonics: Superlens Imaging of Dipolar Emitters and Cloaking in Weak Scattering Publisher School of Science Unit Department of Applied Physics Series Aalto University publication series DOCTORAL DISSERTATIONS 151/2012 Field of research Engineering Physics, Physics Manuscript submitted 21 August 2012 Date of the defence 30 November 2012 Permission to publish granted (date) 29 October 2012 Language English Monograph Article dissertation (summary + original articles) Abstract Two novel topics of nanophotonics, near-field imaging by superlenses and invisibility cloaking with slab scatterers, are investigated within the context of classical electromagnetic theory. In superlens imaging the objects are radiating point dipoles or externally excited dipolar emitters. The imaging element is a metallic or a slightly lossy negative-index material (NIM) slab with thickness of a few tens of nanometers. The electromagnetic angular spectrum representation is used to derive the Green tensors for the slab’s transmission and reflection. With this formalism the point-spread function of the imaging system is numerically evaluated, which enables one to assess resolution and image brightness. The dependence of image quality on the system parameters, dipole orientations, and near-field interactions among the objects and the lens is investigated. It is shown that both metallic and lossy metamaterial superlenses allow for image definitions beyond the usual diffraction limit of half the wavelength λ. High image quality requires a low-absorption slab and a good impedance match of the lens and its surroundings. In the immediate vicinity of the slab the dipole-slab interaction prevents the dipole from radiating. With low-loss NIM the interaction is weak and of short range. For silver slabs the interaction is stronger and reaches over the near-field zone, adversely influencing the imaging capabilities. With two dipole-like objects the emission is also suppressed by dipole-dipole near-field interactions, in particular with molecular objects while the effect is weak for glass or metallic nanoparticles. Due to interference subwavelength definition can only be attained for dipoles aligned predominantly orthogonal to the slab. Such a situation is achieved with excitation by total internal reflection. In optimal circumstances, resolutions of about λ/5 for silver and λ/10 for metamaterial lens are reached in three-dimensional configurations. Invisibility cloaking is considered within weak optical scattering in slab geometry. The conditions for cloaking in forward and backward directions are established, enabling the determination of the cloak’s refractive-index distribution for stratified objects. For any absorbing object forward cloaking is achieved with a lossy NIM or gainy ordinary-material slab. The cloaking is perfect for incident fields of any spatial structure and bandwidth. Backward cloaking is found possible with self-imaging fields. In both cases the cloak’s dispersive properties resemble those of the object.Two novel topics of nanophotonics, near-field imaging by superlenses and invisibility cloaking with slab scatterers, are investigated within the context of classical electromagnetic theory. In superlens imaging the objects are radiating point dipoles or externally excited dipolar emitters. The imaging element is a metallic or a slightly lossy negative-index material (NIM) slab with thickness of a few tens of nanometers. The electromagnetic angular spectrum representation is used to derive the Green tensors for the slab’s transmission and reflection. With this formalism the point-spread function of the imaging system is numerically evaluated, which enables one to assess resolution and image brightness. The dependence of image quality on the system parameters, dipole orientations, and near-field interactions among the objects and the lens is investigated. It is shown that both metallic and lossy metamaterial superlenses allow for image definitions beyond the usual diffraction limit of half the wavelength λ. High image quality requires a low-absorption slab and a good impedance match of the lens and its surroundings. In the immediate vicinity of the slab the dipole-slab interaction prevents the dipole from radiating. With low-loss NIM the interaction is weak and of short range. For silver slabs the interaction is stronger and reaches over the near-field zone, adversely influencing the imaging capabilities. With two dipole-like objects the emission is also suppressed by dipole-dipole near-field interactions, in particular with molecular objects while the effect is weak for glass or metallic nanoparticles. Due to interference subwavelength definition can only be attained for dipoles aligned predominantly orthogonal to the slab. Such a situation is achieved with excitation by total internal reflection. In optimal circumstances, resolutions of about λ/5 for silver and λ/10 for metamaterial lens are reached in three-dimensional configurations. Invisibility cloaking is considered within weak optical scattering in slab geometry. The conditions for cloaking in forward and backward directions are established, enabling the determination of the cloak’s refractive-index distribution for stratified objects. For any absorbing object forward cloaking is achieved with a lossy NIM or gainy ordinary-material slab. The cloaking is perfect for incident fields of any spatial structure and bandwidth. Backward cloaking is found possible with self-imaging fields. In both cases the cloak’s dispersive properties resemble those of the object." @default.
- W2465718707 created "2016-07-22" @default.
- W2465718707 creator A5084385933 @default.
- W2465718707 date "2012-01-01" @default.
- W2465718707 modified "2023-09-25" @default.
- W2465718707 title "Electromagnetic Nanophotonics: Superlens Imaging of Dipolar Emitters and Cloaking in Weak Scattering" @default.
- W2465718707 cites W101782171 @default.
- W2465718707 cites W1495836024 @default.
- W2465718707 cites W1507665636 @default.
- W2465718707 cites W1512109397 @default.
- W2465718707 cites W1528476941 @default.
- W2465718707 cites W1532198289 @default.
- W2465718707 cites W1563885131 @default.
- W2465718707 cites W1572432597 @default.
- W2465718707 cites W1643664198 @default.
- W2465718707 cites W1658472922 @default.
- W2465718707 cites W1672766972 @default.
- W2465718707 cites W1963759463 @default.
- W2465718707 cites W1967564200 @default.
- W2465718707 cites W1972265157 @default.
- W2465718707 cites W1972547407 @default.
- W2465718707 cites W1972678682 @default.
- W2465718707 cites W1973054824 @default.
- W2465718707 cites W1973117762 @default.
- W2465718707 cites W1976370585 @default.
- W2465718707 cites W1977733098 @default.
- W2465718707 cites W1982873897 @default.
- W2465718707 cites W1983765474 @default.
- W2465718707 cites W1985303788 @default.
- W2465718707 cites W1985705155 @default.
- W2465718707 cites W1985708953 @default.
- W2465718707 cites W1987747493 @default.
- W2465718707 cites W1990245077 @default.
- W2465718707 cites W1991227081 @default.
- W2465718707 cites W1992288929 @default.
- W2465718707 cites W1992865536 @default.
- W2465718707 cites W1994100668 @default.
- W2465718707 cites W1995031177 @default.
- W2465718707 cites W1995796806 @default.
- W2465718707 cites W1996476293 @default.
- W2465718707 cites W1998455843 @default.
- W2465718707 cites W1998502016 @default.
- W2465718707 cites W2001878168 @default.
- W2465718707 cites W2003995109 @default.
- W2465718707 cites W2006530737 @default.
- W2465718707 cites W2008255110 @default.
- W2465718707 cites W2009415312 @default.
- W2465718707 cites W2010872619 @default.
- W2465718707 cites W2011994939 @default.
- W2465718707 cites W2012605152 @default.
- W2465718707 cites W2013251712 @default.
- W2465718707 cites W2015408750 @default.
- W2465718707 cites W2015726759 @default.
- W2465718707 cites W2019710617 @default.
- W2465718707 cites W2023133480 @default.
- W2465718707 cites W2023554267 @default.
- W2465718707 cites W2023653333 @default.
- W2465718707 cites W2025013383 @default.
- W2465718707 cites W2025864484 @default.
- W2465718707 cites W2026488582 @default.
- W2465718707 cites W2027409326 @default.
- W2465718707 cites W2027652501 @default.
- W2465718707 cites W2029657879 @default.
- W2465718707 cites W20314247 @default.
- W2465718707 cites W2032231305 @default.
- W2465718707 cites W2034916967 @default.
- W2465718707 cites W2036324861 @default.
- W2465718707 cites W2040006752 @default.
- W2465718707 cites W2041048930 @default.
- W2465718707 cites W2043277506 @default.
- W2465718707 cites W2045305845 @default.
- W2465718707 cites W2046491955 @default.
- W2465718707 cites W2047535039 @default.
- W2465718707 cites W2048125550 @default.
- W2465718707 cites W2048319977 @default.
- W2465718707 cites W2051538311 @default.
- W2465718707 cites W2051660630 @default.
- W2465718707 cites W2052447284 @default.
- W2465718707 cites W2053996790 @default.
- W2465718707 cites W2058504517 @default.
- W2465718707 cites W2059059888 @default.
- W2465718707 cites W2060213335 @default.
- W2465718707 cites W2061252876 @default.
- W2465718707 cites W2062093498 @default.
- W2465718707 cites W2064606821 @default.
- W2465718707 cites W2065835635 @default.
- W2465718707 cites W2066651930 @default.
- W2465718707 cites W2067185989 @default.
- W2465718707 cites W2068019452 @default.
- W2465718707 cites W2075448644 @default.
- W2465718707 cites W2078176998 @default.
- W2465718707 cites W2080157995 @default.
- W2465718707 cites W2082386486 @default.
- W2465718707 cites W2083309142 @default.
- W2465718707 cites W2083675476 @default.
- W2465718707 cites W2083926174 @default.
- W2465718707 cites W2084616899 @default.
- W2465718707 cites W2088240770 @default.
- W2465718707 cites W2088610952 @default.
- W2465718707 cites W2092495058 @default.