Matches in SemOpenAlex for { <https://semopenalex.org/work/W2465767691> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2465767691 abstract "The hierarchical MAX (HMAX) model of human visual system has been used in robotics and autonomous systems widely. However, there is still a stark gap between human and robotic vision in observing the environment and intelligently categorizing the objects. Therefore, improving models such as the HMAX is still topical. In this work, in order to enhance the performance of HMAX in an object recognition task, we augmented it using an elastic net-regularised dictionary learning approach. We used the notion of sparse coding in the S layers of the HMAX model to extract mid- and high-level, i.e. abstract, features from input images. In addition, we used spatial pyramid pooling (SPP) at the output of higher layers to create a fixed feature vectors before feeding them into a softmax classifier. In our model, the sparse coefficients calculated by the elastic net-regularised dictionary learning algorithm were used to train and test the model. With this setup, we achieved a classification accuracy of 82.6387%∓3.7183% averaged across 5-folds which is significantly better than that achieved with the original HMAX." @default.
- W2465767691 created "2016-07-22" @default.
- W2465767691 creator A5021118449 @default.
- W2465767691 creator A5022564157 @default.
- W2465767691 creator A5049618827 @default.
- W2465767691 creator A5070255963 @default.
- W2465767691 date "2015-01-01" @default.
- W2465767691 modified "2023-09-23" @default.
- W2465767691 title "An elastic net-regularized HMAX model of visual processing" @default.
- W2465767691 doi "https://doi.org/10.1049/cp.2015.1753" @default.
- W2465767691 hasPublicationYear "2015" @default.
- W2465767691 type Work @default.
- W2465767691 sameAs 2465767691 @default.
- W2465767691 citedByCount "4" @default.
- W2465767691 countsByYear W24657676912016 @default.
- W2465767691 countsByYear W24657676912019 @default.
- W2465767691 countsByYear W24657676912020 @default.
- W2465767691 crossrefType "proceedings-article" @default.
- W2465767691 hasAuthorship W2465767691A5021118449 @default.
- W2465767691 hasAuthorship W2465767691A5022564157 @default.
- W2465767691 hasAuthorship W2465767691A5049618827 @default.
- W2465767691 hasAuthorship W2465767691A5070255963 @default.
- W2465767691 hasBestOaLocation W24657676912 @default.
- W2465767691 hasConcept C148483581 @default.
- W2465767691 hasConcept C153180895 @default.
- W2465767691 hasConcept C154945302 @default.
- W2465767691 hasConcept C188441871 @default.
- W2465767691 hasConcept C203868755 @default.
- W2465767691 hasConcept C31972630 @default.
- W2465767691 hasConcept C34413123 @default.
- W2465767691 hasConcept C41008148 @default.
- W2465767691 hasConcept C70437156 @default.
- W2465767691 hasConcept C77637269 @default.
- W2465767691 hasConcept C81363708 @default.
- W2465767691 hasConcept C90509273 @default.
- W2465767691 hasConcept C95623464 @default.
- W2465767691 hasConceptScore W2465767691C148483581 @default.
- W2465767691 hasConceptScore W2465767691C153180895 @default.
- W2465767691 hasConceptScore W2465767691C154945302 @default.
- W2465767691 hasConceptScore W2465767691C188441871 @default.
- W2465767691 hasConceptScore W2465767691C203868755 @default.
- W2465767691 hasConceptScore W2465767691C31972630 @default.
- W2465767691 hasConceptScore W2465767691C34413123 @default.
- W2465767691 hasConceptScore W2465767691C41008148 @default.
- W2465767691 hasConceptScore W2465767691C70437156 @default.
- W2465767691 hasConceptScore W2465767691C77637269 @default.
- W2465767691 hasConceptScore W2465767691C81363708 @default.
- W2465767691 hasConceptScore W2465767691C90509273 @default.
- W2465767691 hasConceptScore W2465767691C95623464 @default.
- W2465767691 hasLocation W24657676911 @default.
- W2465767691 hasLocation W24657676912 @default.
- W2465767691 hasOpenAccess W2465767691 @default.
- W2465767691 hasPrimaryLocation W24657676911 @default.
- W2465767691 hasRelatedWork W107022391 @default.
- W2465767691 hasRelatedWork W1943935350 @default.
- W2465767691 hasRelatedWork W1974860420 @default.
- W2465767691 hasRelatedWork W1999040015 @default.
- W2465767691 hasRelatedWork W2014481529 @default.
- W2465767691 hasRelatedWork W2037609832 @default.
- W2465767691 hasRelatedWork W2077212304 @default.
- W2465767691 hasRelatedWork W2109255472 @default.
- W2465767691 hasRelatedWork W2141200610 @default.
- W2465767691 hasRelatedWork W2152469116 @default.
- W2465767691 hasRelatedWork W2160483151 @default.
- W2465767691 hasRelatedWork W2438772054 @default.
- W2465767691 hasRelatedWork W2463113024 @default.
- W2465767691 hasRelatedWork W2467570466 @default.
- W2465767691 hasRelatedWork W2469885745 @default.
- W2465767691 hasRelatedWork W2507781969 @default.
- W2465767691 hasRelatedWork W2551397753 @default.
- W2465767691 hasRelatedWork W2617957099 @default.
- W2465767691 hasRelatedWork W2953167240 @default.
- W2465767691 hasRelatedWork W2133663278 @default.
- W2465767691 isParatext "false" @default.
- W2465767691 isRetracted "false" @default.
- W2465767691 magId "2465767691" @default.
- W2465767691 workType "article" @default.