Matches in SemOpenAlex for { <https://semopenalex.org/work/W2466409464> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2466409464 endingPage "66" @default.
- W2466409464 startingPage "55" @default.
- W2466409464 abstract "The brain signals usually generate certain electrical signals that can be recorded and analyzed for detection in several brain disorder diseases. These small signals are expressly called as Electroencephalogram (EEG) signals. This research work analyzes the epileptic disorder in human brain through EEG signal analysis by integrating the best attributes of Artificial Bee Colony (ABC) and radial basis function networks (RBFNNs). We have used Discrete Wavelet Transform (DWT) technique for extraction of potential features from the signal. In our study, for classification of these signals, in this paper, the RBFNNs have been trained by a modified version of ABC algorithm. In the modified ABC, the onlooker bees are selected based on binary tournament unlike roulette wheel selection of ABC. Additionally, kernels such as Gaussian, Multi-quadric, and Inverse-multi-quadric are used for measuring the effectiveness of the method in numerous mixtures of healthy segments, seizure-free segments, and seizure segments. Our experimental outcomes confirm that RBFNN with inverse-multi-quadric kernel trained with modified ABC is significantly better than RBFNNs with other kernels trained by ABC and modified ABC." @default.
- W2466409464 created "2016-07-22" @default.
- W2466409464 creator A5001882647 @default.
- W2466409464 creator A5056192332 @default.
- W2466409464 creator A5071195676 @default.
- W2466409464 date "2017-03-01" @default.
- W2466409464 modified "2023-10-13" @default.
- W2466409464 title "ABC optimized RBF network for classification of EEG signal for epileptic seizure identification" @default.
- W2466409464 cites W1572453520 @default.
- W2466409464 cites W166952052 @default.
- W2466409464 cites W1965862994 @default.
- W2466409464 cites W1974991504 @default.
- W2466409464 cites W1975948719 @default.
- W2466409464 cites W1979148805 @default.
- W2466409464 cites W1999194769 @default.
- W2466409464 cites W2000548777 @default.
- W2466409464 cites W2001265478 @default.
- W2466409464 cites W2007525825 @default.
- W2466409464 cites W2014030649 @default.
- W2466409464 cites W2024952598 @default.
- W2466409464 cites W2027927824 @default.
- W2466409464 cites W2029666105 @default.
- W2466409464 cites W2030215171 @default.
- W2466409464 cites W2030551418 @default.
- W2466409464 cites W2050808034 @default.
- W2466409464 cites W2147885930 @default.
- W2466409464 cites W2154694509 @default.
- W2466409464 cites W2165537050 @default.
- W2466409464 cites W2741203032 @default.
- W2466409464 doi "https://doi.org/10.1016/j.eij.2016.05.001" @default.
- W2466409464 hasPublicationYear "2017" @default.
- W2466409464 type Work @default.
- W2466409464 sameAs 2466409464 @default.
- W2466409464 citedByCount "38" @default.
- W2466409464 countsByYear W24664094642017 @default.
- W2466409464 countsByYear W24664094642018 @default.
- W2466409464 countsByYear W24664094642019 @default.
- W2466409464 countsByYear W24664094642020 @default.
- W2466409464 countsByYear W24664094642021 @default.
- W2466409464 countsByYear W24664094642022 @default.
- W2466409464 countsByYear W24664094642023 @default.
- W2466409464 crossrefType "journal-article" @default.
- W2466409464 hasAuthorship W2466409464A5001882647 @default.
- W2466409464 hasAuthorship W2466409464A5056192332 @default.
- W2466409464 hasAuthorship W2466409464A5071195676 @default.
- W2466409464 hasBestOaLocation W24664094641 @default.
- W2466409464 hasConcept C114614502 @default.
- W2466409464 hasConcept C118552586 @default.
- W2466409464 hasConcept C12267149 @default.
- W2466409464 hasConcept C153180895 @default.
- W2466409464 hasConcept C154945302 @default.
- W2466409464 hasConcept C199360897 @default.
- W2466409464 hasConcept C2779334592 @default.
- W2466409464 hasConcept C2779843651 @default.
- W2466409464 hasConcept C33923547 @default.
- W2466409464 hasConcept C41008148 @default.
- W2466409464 hasConcept C47432892 @default.
- W2466409464 hasConcept C522805319 @default.
- W2466409464 hasConcept C71924100 @default.
- W2466409464 hasConcept C74193536 @default.
- W2466409464 hasConceptScore W2466409464C114614502 @default.
- W2466409464 hasConceptScore W2466409464C118552586 @default.
- W2466409464 hasConceptScore W2466409464C12267149 @default.
- W2466409464 hasConceptScore W2466409464C153180895 @default.
- W2466409464 hasConceptScore W2466409464C154945302 @default.
- W2466409464 hasConceptScore W2466409464C199360897 @default.
- W2466409464 hasConceptScore W2466409464C2779334592 @default.
- W2466409464 hasConceptScore W2466409464C2779843651 @default.
- W2466409464 hasConceptScore W2466409464C33923547 @default.
- W2466409464 hasConceptScore W2466409464C41008148 @default.
- W2466409464 hasConceptScore W2466409464C47432892 @default.
- W2466409464 hasConceptScore W2466409464C522805319 @default.
- W2466409464 hasConceptScore W2466409464C71924100 @default.
- W2466409464 hasConceptScore W2466409464C74193536 @default.
- W2466409464 hasIssue "1" @default.
- W2466409464 hasLocation W24664094641 @default.
- W2466409464 hasLocation W24664094642 @default.
- W2466409464 hasOpenAccess W2466409464 @default.
- W2466409464 hasPrimaryLocation W24664094641 @default.
- W2466409464 hasRelatedWork W200322357 @default.
- W2466409464 hasRelatedWork W2057366091 @default.
- W2466409464 hasRelatedWork W2130428257 @default.
- W2466409464 hasRelatedWork W2166624857 @default.
- W2466409464 hasRelatedWork W2899025944 @default.
- W2466409464 hasRelatedWork W2922348724 @default.
- W2466409464 hasRelatedWork W2988848585 @default.
- W2466409464 hasRelatedWork W4233722919 @default.
- W2466409464 hasRelatedWork W4308951944 @default.
- W2466409464 hasRelatedWork W4312960290 @default.
- W2466409464 hasVolume "18" @default.
- W2466409464 isParatext "false" @default.
- W2466409464 isRetracted "false" @default.
- W2466409464 magId "2466409464" @default.
- W2466409464 workType "article" @default.