Matches in SemOpenAlex for { <https://semopenalex.org/work/W2466520635> ?p ?o ?g. }
- W2466520635 endingPage "972" @default.
- W2466520635 startingPage "972" @default.
- W2466520635 abstract "The use of depth cameras in precision agriculture is increasing day by day. This type of sensor has been used for the plant structure characterization of several crops. However, the discrimination of small plants, such as weeds, is still a challenge within agricultural fields. Improvements in the new Microsoft Kinect v2 sensor can capture the details of plants. The use of a dual methodology using height selection and RGB (Red, Green, Blue) segmentation can separate crops, weeds, and soil. This paper explores the possibilities of this sensor by using Kinect Fusion algorithms to reconstruct 3D point clouds of weed-infested maize crops under real field conditions. The processed models showed good consistency among the 3D depth images and soil measurements obtained from the actual structural parameters. Maize plants were identified in the samples by height selection of the connected faces and showed a correlation of 0.77 with maize biomass. The lower height of the weeds made RGB recognition necessary to separate them from the soil microrelief of the samples, achieving a good correlation of 0.83 with weed biomass. In addition, weed density showed good correlation with volumetric measurements. The canonical discriminant analysis showed promising results for classification into monocots and dictos. These results suggest that estimating volume using the Kinect methodology can be a highly accurate method for crop status determination and weed detection. It offers several possibilities for the automation of agricultural processes by the construction of a new system integrating these sensors and the development of algorithms to properly process the information provided by them." @default.
- W2466520635 created "2016-07-22" @default.
- W2466520635 creator A5018115985 @default.
- W2466520635 creator A5027664422 @default.
- W2466520635 creator A5029236536 @default.
- W2466520635 creator A5041166102 @default.
- W2466520635 date "2016-06-25" @default.
- W2466520635 modified "2023-10-17" @default.
- W2466520635 title "An Approach to the Use of Depth Cameras for Weed Volume Estimation" @default.
- W2466520635 cites W125362319 @default.
- W2466520635 cites W1506917439 @default.
- W2466520635 cites W172327998 @default.
- W2466520635 cites W1936412747 @default.
- W2466520635 cites W1982026899 @default.
- W2466520635 cites W1984566145 @default.
- W2466520635 cites W1989920760 @default.
- W2466520635 cites W1998686312 @default.
- W2466520635 cites W2006976511 @default.
- W2466520635 cites W2007743779 @default.
- W2466520635 cites W2009693030 @default.
- W2466520635 cites W2025384267 @default.
- W2466520635 cites W2029575047 @default.
- W2466520635 cites W2041867049 @default.
- W2466520635 cites W2043055674 @default.
- W2466520635 cites W2048235387 @default.
- W2466520635 cites W2061338905 @default.
- W2466520635 cites W2071906076 @default.
- W2466520635 cites W2074366335 @default.
- W2466520635 cites W2074500385 @default.
- W2466520635 cites W2081715923 @default.
- W2466520635 cites W2084546104 @default.
- W2466520635 cites W2102134956 @default.
- W2466520635 cites W2114937946 @default.
- W2466520635 cites W2135887161 @default.
- W2466520635 cites W2146015328 @default.
- W2466520635 doi "https://doi.org/10.3390/s16070972" @default.
- W2466520635 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4970024" @default.
- W2466520635 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27347972" @default.
- W2466520635 hasPublicationYear "2016" @default.
- W2466520635 type Work @default.
- W2466520635 sameAs 2466520635 @default.
- W2466520635 citedByCount "67" @default.
- W2466520635 countsByYear W24665206352016 @default.
- W2466520635 countsByYear W24665206352017 @default.
- W2466520635 countsByYear W24665206352018 @default.
- W2466520635 countsByYear W24665206352019 @default.
- W2466520635 countsByYear W24665206352020 @default.
- W2466520635 countsByYear W24665206352021 @default.
- W2466520635 countsByYear W24665206352022 @default.
- W2466520635 countsByYear W24665206352023 @default.
- W2466520635 crossrefType "journal-article" @default.
- W2466520635 hasAuthorship W2466520635A5018115985 @default.
- W2466520635 hasAuthorship W2466520635A5027664422 @default.
- W2466520635 hasAuthorship W2466520635A5029236536 @default.
- W2466520635 hasAuthorship W2466520635A5041166102 @default.
- W2466520635 hasBestOaLocation W24665206351 @default.
- W2466520635 hasConcept C115540264 @default.
- W2466520635 hasConcept C115901376 @default.
- W2466520635 hasConcept C118518473 @default.
- W2466520635 hasConcept C120217122 @default.
- W2466520635 hasConcept C127413603 @default.
- W2466520635 hasConcept C154945302 @default.
- W2466520635 hasConcept C166957645 @default.
- W2466520635 hasConcept C205649164 @default.
- W2466520635 hasConcept C2775891814 @default.
- W2466520635 hasConcept C31972630 @default.
- W2466520635 hasConcept C33923547 @default.
- W2466520635 hasConcept C39432304 @default.
- W2466520635 hasConcept C41008148 @default.
- W2466520635 hasConcept C6557445 @default.
- W2466520635 hasConcept C78519656 @default.
- W2466520635 hasConcept C82990744 @default.
- W2466520635 hasConcept C86803240 @default.
- W2466520635 hasConcept C88463610 @default.
- W2466520635 hasConcept C89600930 @default.
- W2466520635 hasConcept C97931131 @default.
- W2466520635 hasConceptScore W2466520635C115540264 @default.
- W2466520635 hasConceptScore W2466520635C115901376 @default.
- W2466520635 hasConceptScore W2466520635C118518473 @default.
- W2466520635 hasConceptScore W2466520635C120217122 @default.
- W2466520635 hasConceptScore W2466520635C127413603 @default.
- W2466520635 hasConceptScore W2466520635C154945302 @default.
- W2466520635 hasConceptScore W2466520635C166957645 @default.
- W2466520635 hasConceptScore W2466520635C205649164 @default.
- W2466520635 hasConceptScore W2466520635C2775891814 @default.
- W2466520635 hasConceptScore W2466520635C31972630 @default.
- W2466520635 hasConceptScore W2466520635C33923547 @default.
- W2466520635 hasConceptScore W2466520635C39432304 @default.
- W2466520635 hasConceptScore W2466520635C41008148 @default.
- W2466520635 hasConceptScore W2466520635C6557445 @default.
- W2466520635 hasConceptScore W2466520635C78519656 @default.
- W2466520635 hasConceptScore W2466520635C82990744 @default.
- W2466520635 hasConceptScore W2466520635C86803240 @default.
- W2466520635 hasConceptScore W2466520635C88463610 @default.
- W2466520635 hasConceptScore W2466520635C89600930 @default.
- W2466520635 hasConceptScore W2466520635C97931131 @default.
- W2466520635 hasIssue "7" @default.
- W2466520635 hasLocation W24665206351 @default.