Matches in SemOpenAlex for { <https://semopenalex.org/work/W2467222092> ?p ?o ?g. }
- W2467222092 abstract "Automated testing is an important part of validating the behavior of software with complex graphical user interfaces, such as web, mobile, and desktop applications. Despite recent advances in UI-level test generation, existing approaches often fail to create complex sequences of events that represent realistic user interactions. As a result, these approaches cannot reach particular parts of the application under test, which then remain untested. This paper presents a UI-level test generation approach that exploits execution traces of human users to automatically create complex sequences of events that go beyond the recorded traces. The key idea is to infer so-called macro events, i.e., sequences of low-level UI events that correspond to a single logical step of interaction, such as choosing an item of a drop-down menu or filling and submitting a form. The approach builds upon and adapts well-known data mining techniques, in particular frequent subsequence mining and inference of finite state machines. We implement the approach for client-side web applications and apply it to four real-world applications. Our results show that macro-based test generation reaches more pages, exercises more usage scenarios, and covers more code within a fixed testing budget than a purely random test generator." @default.
- W2467222092 created "2016-07-22" @default.
- W2467222092 creator A5013438083 @default.
- W2467222092 creator A5047597521 @default.
- W2467222092 date "2016-07-18" @default.
- W2467222092 modified "2023-10-03" @default.
- W2467222092 title "Monkey see, monkey do: effective generation of GUI tests with inferred macro events" @default.
- W2467222092 cites W1603781805 @default.
- W2467222092 cites W1986061933 @default.
- W2467222092 cites W1987647365 @default.
- W2467222092 cites W2004865374 @default.
- W2467222092 cites W2012431717 @default.
- W2467222092 cites W2017190028 @default.
- W2467222092 cites W2030972311 @default.
- W2467222092 cites W2036639103 @default.
- W2467222092 cites W2038461625 @default.
- W2467222092 cites W2043813390 @default.
- W2467222092 cites W2053352009 @default.
- W2467222092 cites W2054520963 @default.
- W2467222092 cites W2059215200 @default.
- W2467222092 cites W2076343783 @default.
- W2467222092 cites W2091932246 @default.
- W2467222092 cites W2093938715 @default.
- W2467222092 cites W2094568767 @default.
- W2467222092 cites W2100148636 @default.
- W2467222092 cites W2104301886 @default.
- W2467222092 cites W2105452745 @default.
- W2467222092 cites W2114503684 @default.
- W2467222092 cites W2114801793 @default.
- W2467222092 cites W2121504314 @default.
- W2467222092 cites W2121507867 @default.
- W2467222092 cites W2121818394 @default.
- W2467222092 cites W2124081952 @default.
- W2467222092 cites W2124722556 @default.
- W2467222092 cites W2126446220 @default.
- W2467222092 cites W2126834265 @default.
- W2467222092 cites W2131109383 @default.
- W2467222092 cites W2134741696 @default.
- W2467222092 cites W2136646111 @default.
- W2467222092 cites W2138660048 @default.
- W2467222092 cites W2144378488 @default.
- W2467222092 cites W2150650310 @default.
- W2467222092 cites W2153964911 @default.
- W2467222092 cites W2155988490 @default.
- W2467222092 cites W2156883549 @default.
- W2467222092 cites W2158391928 @default.
- W2467222092 cites W2168196587 @default.
- W2467222092 cites W2171471938 @default.
- W2467222092 cites W2227887088 @default.
- W2467222092 cites W2295399529 @default.
- W2467222092 cites W4254829975 @default.
- W2467222092 cites W90447038 @default.
- W2467222092 doi "https://doi.org/10.1145/2931037.2931053" @default.
- W2467222092 hasPublicationYear "2016" @default.
- W2467222092 type Work @default.
- W2467222092 sameAs 2467222092 @default.
- W2467222092 citedByCount "31" @default.
- W2467222092 countsByYear W24672220922017 @default.
- W2467222092 countsByYear W24672220922018 @default.
- W2467222092 countsByYear W24672220922019 @default.
- W2467222092 countsByYear W24672220922020 @default.
- W2467222092 countsByYear W24672220922021 @default.
- W2467222092 countsByYear W24672220922022 @default.
- W2467222092 countsByYear W24672220922023 @default.
- W2467222092 crossrefType "proceedings-article" @default.
- W2467222092 hasAuthorship W2467222092A5013438083 @default.
- W2467222092 hasAuthorship W2467222092A5047597521 @default.
- W2467222092 hasConcept C119857082 @default.
- W2467222092 hasConcept C121332964 @default.
- W2467222092 hasConcept C124101348 @default.
- W2467222092 hasConcept C128942645 @default.
- W2467222092 hasConcept C134306372 @default.
- W2467222092 hasConcept C137877099 @default.
- W2467222092 hasConcept C149229913 @default.
- W2467222092 hasConcept C152877465 @default.
- W2467222092 hasConcept C154945302 @default.
- W2467222092 hasConcept C163258240 @default.
- W2467222092 hasConcept C165696696 @default.
- W2467222092 hasConcept C166955791 @default.
- W2467222092 hasConcept C199360897 @default.
- W2467222092 hasConcept C2776214188 @default.
- W2467222092 hasConcept C2777904410 @default.
- W2467222092 hasConcept C2780992000 @default.
- W2467222092 hasConcept C33923547 @default.
- W2467222092 hasConcept C34388435 @default.
- W2467222092 hasConcept C37789001 @default.
- W2467222092 hasConcept C38652104 @default.
- W2467222092 hasConcept C41008148 @default.
- W2467222092 hasConcept C62520636 @default.
- W2467222092 hasConcept C66153210 @default.
- W2467222092 hasConcept C89505385 @default.
- W2467222092 hasConceptScore W2467222092C119857082 @default.
- W2467222092 hasConceptScore W2467222092C121332964 @default.
- W2467222092 hasConceptScore W2467222092C124101348 @default.
- W2467222092 hasConceptScore W2467222092C128942645 @default.
- W2467222092 hasConceptScore W2467222092C134306372 @default.
- W2467222092 hasConceptScore W2467222092C137877099 @default.
- W2467222092 hasConceptScore W2467222092C149229913 @default.
- W2467222092 hasConceptScore W2467222092C152877465 @default.
- W2467222092 hasConceptScore W2467222092C154945302 @default.