Matches in SemOpenAlex for { <https://semopenalex.org/work/W2468046475> ?p ?o ?g. }
- W2468046475 endingPage "751" @default.
- W2468046475 startingPage "747" @default.
- W2468046475 abstract "Abstract. Coastlines are important features for water resources, sea products, energy resources etc. Coastlines are changed dynamically, thus automated methods are necessary for analysing and detecting the changes along the coastlines. In this study, Sentinel-1 C band SAR image has been used to extract the coastline with fuzzy logic approach. The used SAR image has VH polarisation and 10x10m. spatial resolution, covers 57 sqkm area from the south-east of Puerto-Rico. Additionally, radiometric calibration is applied to reduce atmospheric and orbit error, and speckle filter is used to reduce the noise. Then the image is terrain-corrected using SRTM digital surface model. Classification of SAR image is a challenging task since SAR and optical sensors have very different properties. Even between different bands of the SAR sensors, the images look very different. So, the classification of SAR image is difficult with the traditional unsupervised methods. In this study, a fuzzy approach has been applied to distinguish the coastal pixels than the land surface pixels. The standard deviation and the mean, median values are calculated to use as parameters in fuzzy approach. The Mean-standard-deviation (MS) Large membership function is used because the large amounts of land and ocean pixels dominate the SAR image with large mean and standard deviation values. The pixel values are multiplied with 1000 to easify the calculations. The mean is calculated as 23 and the standard deviation is calculated as 12 for the whole image. The multiplier parameters are selected as a: 0.58, b: 0.05 to maximize the land surface membership. The result is evaluated using airborne LIDAR data, only for the areas where LIDAR dataset is available and secondly manually digitized coastline. The laser points which are below 0,5 m are classified as the ocean points. The 3D alpha-shapes algorithm is used to detect the coastline points from LIDAR data. Minimum distances are calculated between the LIDAR points of coastline with the extracted coastline. The statistics of the distances are calculated as following; the mean is 5.82m, standard deviation is 5.83m and the median value is 4.08 m. Secondly, the extracted coastline is also evaluated with manually created lines on SAR image. Both lines are converted to dense points with 1 m interval. Then the closest distances are calculated between the points from extracted coastline and manually created coastline. The mean is 5.23m, standard deviation is 4.52m. and the median value is 4.13m for the calculated distances. The evaluation values are within the accuracy of used SAR data for both quality assessment approaches." @default.
- W2468046475 created "2016-07-22" @default.
- W2468046475 creator A5020273358 @default.
- W2468046475 creator A5025525022 @default.
- W2468046475 creator A5050634376 @default.
- W2468046475 date "2016-06-21" @default.
- W2468046475 modified "2023-10-01" @default.
- W2468046475 title "EXTRACTION OF COASTLINES WITH FUZZY APPROACH USING SENTINEL-1 SAR IMAGE" @default.
- W2468046475 cites W1769926588 @default.
- W2468046475 cites W1964440917 @default.
- W2468046475 cites W1969807011 @default.
- W2468046475 cites W1978984144 @default.
- W2468046475 cites W1981055814 @default.
- W2468046475 cites W1983468584 @default.
- W2468046475 cites W1989072478 @default.
- W2468046475 cites W2027007720 @default.
- W2468046475 cites W2036043464 @default.
- W2468046475 cites W2038182754 @default.
- W2468046475 cites W2048662112 @default.
- W2468046475 cites W2078617216 @default.
- W2468046475 cites W2111345113 @default.
- W2468046475 cites W2114666101 @default.
- W2468046475 cites W2115215885 @default.
- W2468046475 cites W2163282650 @default.
- W2468046475 cites W2292302010 @default.
- W2468046475 doi "https://doi.org/10.5194/isprs-archives-xli-b7-747-2016" @default.
- W2468046475 hasPublicationYear "2016" @default.
- W2468046475 type Work @default.
- W2468046475 sameAs 2468046475 @default.
- W2468046475 citedByCount "11" @default.
- W2468046475 countsByYear W24680464752017 @default.
- W2468046475 countsByYear W24680464752018 @default.
- W2468046475 countsByYear W24680464752019 @default.
- W2468046475 countsByYear W24680464752021 @default.
- W2468046475 countsByYear W24680464752022 @default.
- W2468046475 countsByYear W24680464752023 @default.
- W2468046475 crossrefType "journal-article" @default.
- W2468046475 hasAuthorship W2468046475A5020273358 @default.
- W2468046475 hasAuthorship W2468046475A5025525022 @default.
- W2468046475 hasAuthorship W2468046475A5050634376 @default.
- W2468046475 hasBestOaLocation W24680464751 @default.
- W2468046475 hasConcept C105795698 @default.
- W2468046475 hasConcept C115961682 @default.
- W2468046475 hasConcept C121332964 @default.
- W2468046475 hasConcept C127313418 @default.
- W2468046475 hasConcept C1276947 @default.
- W2468046475 hasConcept C154945302 @default.
- W2468046475 hasConcept C160633673 @default.
- W2468046475 hasConcept C161840515 @default.
- W2468046475 hasConcept C181843262 @default.
- W2468046475 hasConcept C184149073 @default.
- W2468046475 hasConcept C19269812 @default.
- W2468046475 hasConcept C205649164 @default.
- W2468046475 hasConcept C22679943 @default.
- W2468046475 hasConcept C33923547 @default.
- W2468046475 hasConcept C41008148 @default.
- W2468046475 hasConcept C55352655 @default.
- W2468046475 hasConcept C58166 @default.
- W2468046475 hasConcept C58640448 @default.
- W2468046475 hasConcept C62649853 @default.
- W2468046475 hasConcept C87360688 @default.
- W2468046475 hasConcept C9417928 @default.
- W2468046475 hasConceptScore W2468046475C105795698 @default.
- W2468046475 hasConceptScore W2468046475C115961682 @default.
- W2468046475 hasConceptScore W2468046475C121332964 @default.
- W2468046475 hasConceptScore W2468046475C127313418 @default.
- W2468046475 hasConceptScore W2468046475C1276947 @default.
- W2468046475 hasConceptScore W2468046475C154945302 @default.
- W2468046475 hasConceptScore W2468046475C160633673 @default.
- W2468046475 hasConceptScore W2468046475C161840515 @default.
- W2468046475 hasConceptScore W2468046475C181843262 @default.
- W2468046475 hasConceptScore W2468046475C184149073 @default.
- W2468046475 hasConceptScore W2468046475C19269812 @default.
- W2468046475 hasConceptScore W2468046475C205649164 @default.
- W2468046475 hasConceptScore W2468046475C22679943 @default.
- W2468046475 hasConceptScore W2468046475C33923547 @default.
- W2468046475 hasConceptScore W2468046475C41008148 @default.
- W2468046475 hasConceptScore W2468046475C55352655 @default.
- W2468046475 hasConceptScore W2468046475C58166 @default.
- W2468046475 hasConceptScore W2468046475C58640448 @default.
- W2468046475 hasConceptScore W2468046475C62649853 @default.
- W2468046475 hasConceptScore W2468046475C87360688 @default.
- W2468046475 hasConceptScore W2468046475C9417928 @default.
- W2468046475 hasLocation W24680464751 @default.
- W2468046475 hasOpenAccess W2468046475 @default.
- W2468046475 hasPrimaryLocation W24680464751 @default.
- W2468046475 hasRelatedWork W126533163 @default.
- W2468046475 hasRelatedWork W1514908879 @default.
- W2468046475 hasRelatedWork W2071456269 @default.
- W2468046475 hasRelatedWork W2093166460 @default.
- W2468046475 hasRelatedWork W2104326964 @default.
- W2468046475 hasRelatedWork W2129669972 @default.
- W2468046475 hasRelatedWork W2138896767 @default.
- W2468046475 hasRelatedWork W2556299634 @default.
- W2468046475 hasRelatedWork W3149860494 @default.
- W2468046475 hasRelatedWork W4385626050 @default.
- W2468046475 hasVolume "XLI-B7" @default.
- W2468046475 isParatext "false" @default.