Matches in SemOpenAlex for { <https://semopenalex.org/work/W2469142871> ?p ?o ?g. }
- W2469142871 endingPage "6150" @default.
- W2469142871 startingPage "6138" @default.
- W2469142871 abstract "Hyperspectral imaging offers new opportunities for pattern recognition tasks in the remote sensing community through its improved discrimination in the spectral domain. However, such advanced image processing also brings new challenges due to the high data dimensionality in both the spatial and spectral domains. To relieve this issue, in this paper, we present a novel multidomain subspace (MDS) feature representation and classification method for hyperspectral images. The proposed method is based on a patch alignment framework. In order to optimally combine the feature representations from the various domains and simultaneously enhance the subspace discriminability, we incorporate the supervised label information into each domain and further generalize the framework to a multidomain version. Furthermore, we develop an iterative approach to alternately optimize the MDS objective function by considering it as two subconvex optimizations. The classification performance on three standard hyperspectral remote sensing images confirms the superiority of the proposed MDS algorithm over the state-of-the-art subspace learning methods." @default.
- W2469142871 created "2016-07-22" @default.
- W2469142871 creator A5024278302 @default.
- W2469142871 creator A5060042752 @default.
- W2469142871 creator A5066135984 @default.
- W2469142871 creator A5080867201 @default.
- W2469142871 date "2016-10-01" @default.
- W2469142871 modified "2023-10-14" @default.
- W2469142871 title "Multidomain Subspace Classification for Hyperspectral Images" @default.
- W2469142871 cites W1517907761 @default.
- W2469142871 cites W1974477236 @default.
- W2469142871 cites W1985133440 @default.
- W2469142871 cites W1995295300 @default.
- W2469142871 cites W2001298023 @default.
- W2469142871 cites W2008847349 @default.
- W2469142871 cites W2015258183 @default.
- W2469142871 cites W2019338222 @default.
- W2469142871 cites W2024665158 @default.
- W2469142871 cites W2025263547 @default.
- W2469142871 cites W2027717478 @default.
- W2469142871 cites W2038930744 @default.
- W2469142871 cites W2041100636 @default.
- W2469142871 cites W2047705660 @default.
- W2469142871 cites W2049189005 @default.
- W2469142871 cites W2053615857 @default.
- W2469142871 cites W2057688677 @default.
- W2469142871 cites W2063385051 @default.
- W2469142871 cites W2080116978 @default.
- W2469142871 cites W2083969383 @default.
- W2469142871 cites W2085789144 @default.
- W2469142871 cites W2087263574 @default.
- W2469142871 cites W2092869901 @default.
- W2469142871 cites W2098057602 @default.
- W2469142871 cites W2107131609 @default.
- W2469142871 cites W2118796925 @default.
- W2469142871 cites W2121568632 @default.
- W2469142871 cites W2127152713 @default.
- W2469142871 cites W2129149445 @default.
- W2469142871 cites W2132822263 @default.
- W2469142871 cites W2134123547 @default.
- W2469142871 cites W2151599207 @default.
- W2469142871 cites W2152057649 @default.
- W2469142871 cites W2158108683 @default.
- W2469142871 cites W2166782149 @default.
- W2469142871 cites W2166923144 @default.
- W2469142871 cites W87822204 @default.
- W2469142871 doi "https://doi.org/10.1109/tgrs.2016.2582209" @default.
- W2469142871 hasPublicationYear "2016" @default.
- W2469142871 type Work @default.
- W2469142871 sameAs 2469142871 @default.
- W2469142871 citedByCount "14" @default.
- W2469142871 countsByYear W24691428712017 @default.
- W2469142871 countsByYear W24691428712018 @default.
- W2469142871 countsByYear W24691428712019 @default.
- W2469142871 countsByYear W24691428712020 @default.
- W2469142871 countsByYear W24691428712022 @default.
- W2469142871 countsByYear W24691428712023 @default.
- W2469142871 crossrefType "journal-article" @default.
- W2469142871 hasAuthorship W2469142871A5024278302 @default.
- W2469142871 hasAuthorship W2469142871A5060042752 @default.
- W2469142871 hasAuthorship W2469142871A5066135984 @default.
- W2469142871 hasAuthorship W2469142871A5080867201 @default.
- W2469142871 hasConcept C111030470 @default.
- W2469142871 hasConcept C134306372 @default.
- W2469142871 hasConcept C138885662 @default.
- W2469142871 hasConcept C153180895 @default.
- W2469142871 hasConcept C154945302 @default.
- W2469142871 hasConcept C159078339 @default.
- W2469142871 hasConcept C17744445 @default.
- W2469142871 hasConcept C199539241 @default.
- W2469142871 hasConcept C2776359362 @default.
- W2469142871 hasConcept C2776401178 @default.
- W2469142871 hasConcept C32834561 @default.
- W2469142871 hasConcept C33923547 @default.
- W2469142871 hasConcept C36503486 @default.
- W2469142871 hasConcept C41008148 @default.
- W2469142871 hasConcept C41895202 @default.
- W2469142871 hasConcept C59404180 @default.
- W2469142871 hasConcept C94625758 @default.
- W2469142871 hasConceptScore W2469142871C111030470 @default.
- W2469142871 hasConceptScore W2469142871C134306372 @default.
- W2469142871 hasConceptScore W2469142871C138885662 @default.
- W2469142871 hasConceptScore W2469142871C153180895 @default.
- W2469142871 hasConceptScore W2469142871C154945302 @default.
- W2469142871 hasConceptScore W2469142871C159078339 @default.
- W2469142871 hasConceptScore W2469142871C17744445 @default.
- W2469142871 hasConceptScore W2469142871C199539241 @default.
- W2469142871 hasConceptScore W2469142871C2776359362 @default.
- W2469142871 hasConceptScore W2469142871C2776401178 @default.
- W2469142871 hasConceptScore W2469142871C32834561 @default.
- W2469142871 hasConceptScore W2469142871C33923547 @default.
- W2469142871 hasConceptScore W2469142871C36503486 @default.
- W2469142871 hasConceptScore W2469142871C41008148 @default.
- W2469142871 hasConceptScore W2469142871C41895202 @default.
- W2469142871 hasConceptScore W2469142871C59404180 @default.
- W2469142871 hasConceptScore W2469142871C94625758 @default.
- W2469142871 hasFunder F4320321001 @default.
- W2469142871 hasFunder F4320335777 @default.