Matches in SemOpenAlex for { <https://semopenalex.org/work/W2469819959> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2469819959 endingPage "283" @default.
- W2469819959 startingPage "267" @default.
- W2469819959 abstract "Colonoscopy exam images are useful to identify diseases, such as the colorectal cancer, which is one of the most common cancers worldwide. Computational image analysis and machine learning techniques can assist experts to identify abnormalities in these images. In this work, we present and evaluate MIAS 3.0, which aims to help experts to study and analyze colon tissue images. To do so, the system initially extracts features from these images. Currently, Amadasum, Haralick and Laws texture descriptors are supported. Then, the described images are classified into normal or abnormal images. In this version, J48, nearest neighbor, backpropagation based on multilayer perceptron, naive Bayes, and support vector machine classification algorithms are implemented. MIAS was developed with open source technologies using a software engineering approach to improve flexibility and maintainability. In this work, MIAS was quantitatively assessed by its application in a set of 134 tissue image fragments. The classifiers built from this set were compared according to the cross-validation and contingency table strategies. Also, the system was qualitatively evaluated using 12 heuristics by twelve volunteers from Health and Exact Sciences. The issues found were categorized according to Rolf Molich’s severity scale. As a result, the J48 classifier achieved the highest sensitivity (85.07%) and reasonable average error (18.68%). In the qualitative evaluation, 61.26% of the issues found were not considered serious. These assessments suggest that MIAS can be useful to assist domain experts with minimum knowledge in informatics to conduct more complete studies of medical images, by identifying patterns regarding different abnormalities." @default.
- W2469819959 created "2016-07-22" @default.
- W2469819959 creator A5002550458 @default.
- W2469819959 creator A5019597664 @default.
- W2469819959 creator A5043664053 @default.
- W2469819959 creator A5079461444 @default.
- W2469819959 creator A5091871203 @default.
- W2469819959 date "2016-11-01" @default.
- W2469819959 modified "2023-10-18" @default.
- W2469819959 title "Prototype system for feature extraction, classification and study of medical images" @default.
- W2469819959 cites W1263185392 @default.
- W2469819959 cites W1907292960 @default.
- W2469819959 cites W1967144543 @default.
- W2469819959 cites W1976137296 @default.
- W2469819959 cites W1985727327 @default.
- W2469819959 cites W1993377852 @default.
- W2469819959 cites W1994127966 @default.
- W2469819959 cites W2014538668 @default.
- W2469819959 cites W2019090719 @default.
- W2469819959 cites W2029046634 @default.
- W2469819959 cites W2029692362 @default.
- W2469819959 cites W2044465660 @default.
- W2469819959 cites W2067159312 @default.
- W2469819959 cites W2070644180 @default.
- W2469819959 cites W2088658556 @default.
- W2469819959 cites W2092653417 @default.
- W2469819959 cites W2107327240 @default.
- W2469819959 cites W2108009806 @default.
- W2469819959 cites W2122264932 @default.
- W2469819959 cites W2135917749 @default.
- W2469819959 cites W2151103935 @default.
- W2469819959 cites W2153635508 @default.
- W2469819959 cites W2163352848 @default.
- W2469819959 cites W2165731615 @default.
- W2469819959 cites W2167277498 @default.
- W2469819959 cites W2168745915 @default.
- W2469819959 cites W2911964244 @default.
- W2469819959 cites W4241727697 @default.
- W2469819959 cites W81463918 @default.
- W2469819959 doi "https://doi.org/10.1016/j.eswa.2016.07.008" @default.
- W2469819959 hasPublicationYear "2016" @default.
- W2469819959 type Work @default.
- W2469819959 sameAs 2469819959 @default.
- W2469819959 citedByCount "20" @default.
- W2469819959 countsByYear W24698199592017 @default.
- W2469819959 countsByYear W24698199592018 @default.
- W2469819959 countsByYear W24698199592019 @default.
- W2469819959 countsByYear W24698199592020 @default.
- W2469819959 countsByYear W24698199592021 @default.
- W2469819959 countsByYear W24698199592022 @default.
- W2469819959 countsByYear W24698199592023 @default.
- W2469819959 crossrefType "journal-article" @default.
- W2469819959 hasAuthorship W2469819959A5002550458 @default.
- W2469819959 hasAuthorship W2469819959A5019597664 @default.
- W2469819959 hasAuthorship W2469819959A5043664053 @default.
- W2469819959 hasAuthorship W2469819959A5079461444 @default.
- W2469819959 hasAuthorship W2469819959A5091871203 @default.
- W2469819959 hasConcept C119857082 @default.
- W2469819959 hasConcept C12267149 @default.
- W2469819959 hasConcept C124101348 @default.
- W2469819959 hasConcept C153180895 @default.
- W2469819959 hasConcept C154945302 @default.
- W2469819959 hasConcept C41008148 @default.
- W2469819959 hasConcept C52001869 @default.
- W2469819959 hasConcept C52003472 @default.
- W2469819959 hasConcept C95623464 @default.
- W2469819959 hasConceptScore W2469819959C119857082 @default.
- W2469819959 hasConceptScore W2469819959C12267149 @default.
- W2469819959 hasConceptScore W2469819959C124101348 @default.
- W2469819959 hasConceptScore W2469819959C153180895 @default.
- W2469819959 hasConceptScore W2469819959C154945302 @default.
- W2469819959 hasConceptScore W2469819959C41008148 @default.
- W2469819959 hasConceptScore W2469819959C52001869 @default.
- W2469819959 hasConceptScore W2469819959C52003472 @default.
- W2469819959 hasConceptScore W2469819959C95623464 @default.
- W2469819959 hasFunder F4320321091 @default.
- W2469819959 hasLocation W24698199591 @default.
- W2469819959 hasOpenAccess W2469819959 @default.
- W2469819959 hasPrimaryLocation W24698199591 @default.
- W2469819959 hasRelatedWork W2136184105 @default.
- W2469819959 hasRelatedWork W2506787293 @default.
- W2469819959 hasRelatedWork W2786082903 @default.
- W2469819959 hasRelatedWork W3013515612 @default.
- W2469819959 hasRelatedWork W3186233728 @default.
- W2469819959 hasRelatedWork W4214653893 @default.
- W2469819959 hasRelatedWork W4239543918 @default.
- W2469819959 hasRelatedWork W4327772909 @default.
- W2469819959 hasRelatedWork W4364301914 @default.
- W2469819959 hasRelatedWork W2345184372 @default.
- W2469819959 hasVolume "63" @default.
- W2469819959 isParatext "false" @default.
- W2469819959 isRetracted "false" @default.
- W2469819959 magId "2469819959" @default.
- W2469819959 workType "article" @default.