Matches in SemOpenAlex for { <https://semopenalex.org/work/W2469871946> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2469871946 endingPage "1518" @default.
- W2469871946 startingPage "1507" @default.
- W2469871946 abstract "Performance debugging using program profiling and tracing for scientific workflows can be extremely difficult for two reasons. 1) Existing performance tools lack the ability to automatically produce global performance data based on local information from coupled scientific applications of workflows, particularly at runtime. 2) Profiling/tracing with static instrumentation may incur high overhead and significantly slow down science-critical tasks. To gain more insights on workflows we introduce a lightweight workflow monitoring infrastructure, WOW-MON (WOrkfloW MONitor), which enables user's access not only to cross-application performance data such as end-to-end latency and execution time of individual workflow components at runtime, but also to customized performance events. To reduce profiling overhead, WOW-MON uses adaptive selection of performance metrics based on machine learning algorithms to guide profilers collecting only metrics that have most impact on performance of workflows. Through the study of real scientific workflows (e.g., LAMMPS) with the help of WOWMON, we found that the performance of the workflows can be significantly affected by both software and hardware factors, such as the policy of process mapping and in-situ buffer size. Moreover, we experimentally show that WOWMON can reduce data movement for profiling by up to 54% without missing the key metrics for performance debugging." @default.
- W2469871946 created "2016-07-22" @default.
- W2469871946 creator A5029524538 @default.
- W2469871946 creator A5053542535 @default.
- W2469871946 creator A5070742295 @default.
- W2469871946 creator A5084907146 @default.
- W2469871946 date "2016-01-01" @default.
- W2469871946 modified "2023-09-27" @default.
- W2469871946 title "WOWMON: A Machine Learning-based Profiler for Self-adaptive Instrumentation of Scientific Workflows" @default.
- W2469871946 cites W1542130766 @default.
- W2469871946 cites W1965351873 @default.
- W2469871946 cites W1969024859 @default.
- W2469871946 cites W1981809523 @default.
- W2469871946 cites W2098984303 @default.
- W2469871946 cites W2101343419 @default.
- W2469871946 cites W2133990480 @default.
- W2469871946 cites W2136434791 @default.
- W2469871946 cites W2140348269 @default.
- W2469871946 cites W2150470619 @default.
- W2469871946 cites W4247050054 @default.
- W2469871946 doi "https://doi.org/10.1016/j.procs.2016.05.474" @default.
- W2469871946 hasPublicationYear "2016" @default.
- W2469871946 type Work @default.
- W2469871946 sameAs 2469871946 @default.
- W2469871946 citedByCount "8" @default.
- W2469871946 countsByYear W24698719462016 @default.
- W2469871946 countsByYear W24698719462020 @default.
- W2469871946 countsByYear W24698719462021 @default.
- W2469871946 countsByYear W24698719462022 @default.
- W2469871946 crossrefType "journal-article" @default.
- W2469871946 hasAuthorship W2469871946A5029524538 @default.
- W2469871946 hasAuthorship W2469871946A5053542535 @default.
- W2469871946 hasAuthorship W2469871946A5070742295 @default.
- W2469871946 hasAuthorship W2469871946A5084907146 @default.
- W2469871946 hasBestOaLocation W24698719461 @default.
- W2469871946 hasConcept C111919701 @default.
- W2469871946 hasConcept C115903868 @default.
- W2469871946 hasConcept C120314980 @default.
- W2469871946 hasConcept C138673069 @default.
- W2469871946 hasConcept C149635348 @default.
- W2469871946 hasConcept C168065819 @default.
- W2469871946 hasConcept C177212765 @default.
- W2469871946 hasConcept C187191949 @default.
- W2469871946 hasConcept C2777904410 @default.
- W2469871946 hasConcept C41008148 @default.
- W2469871946 hasConcept C77088390 @default.
- W2469871946 hasConceptScore W2469871946C111919701 @default.
- W2469871946 hasConceptScore W2469871946C115903868 @default.
- W2469871946 hasConceptScore W2469871946C120314980 @default.
- W2469871946 hasConceptScore W2469871946C138673069 @default.
- W2469871946 hasConceptScore W2469871946C149635348 @default.
- W2469871946 hasConceptScore W2469871946C168065819 @default.
- W2469871946 hasConceptScore W2469871946C177212765 @default.
- W2469871946 hasConceptScore W2469871946C187191949 @default.
- W2469871946 hasConceptScore W2469871946C2777904410 @default.
- W2469871946 hasConceptScore W2469871946C41008148 @default.
- W2469871946 hasConceptScore W2469871946C77088390 @default.
- W2469871946 hasLocation W24698719461 @default.
- W2469871946 hasOpenAccess W2469871946 @default.
- W2469871946 hasPrimaryLocation W24698719461 @default.
- W2469871946 hasRelatedWork W1509417579 @default.
- W2469871946 hasRelatedWork W1602801198 @default.
- W2469871946 hasRelatedWork W2010961992 @default.
- W2469871946 hasRelatedWork W2364519557 @default.
- W2469871946 hasRelatedWork W2382322216 @default.
- W2469871946 hasRelatedWork W2515745369 @default.
- W2469871946 hasRelatedWork W2941765909 @default.
- W2469871946 hasRelatedWork W2964552794 @default.
- W2469871946 hasRelatedWork W2975791840 @default.
- W2469871946 hasRelatedWork W3206324740 @default.
- W2469871946 hasVolume "80" @default.
- W2469871946 isParatext "false" @default.
- W2469871946 isRetracted "false" @default.
- W2469871946 magId "2469871946" @default.
- W2469871946 workType "article" @default.