Matches in SemOpenAlex for { <https://semopenalex.org/work/W2470233764> ?p ?o ?g. }
- W2470233764 abstract "Untargeted metabolomics is a powerful phenotyping tool for better understanding biological mechanisms involved in human pathology development and identifying early predictive biomarkers. This approach, based on multiple analytical platforms, such as mass spectrometry (MS), chemometrics and bioinformatics, generates massive and complex data that need appropriate analyses to extract the biologically meaningful information. Despite various tools available, it is still a challenge to handle such large and noisy datasets with limited number of individuals without risking overfitting. Moreover, when the objective is focused on the identification of early predictive markers of clinical outcome, few years before occurrence, it becomes essential to use the appropriate algorithms and workflow to be able to discover subtle effects among this large amount of data. In this context, this work consists in studying a workflow describing the general feature selection process, using knowledge discovery and data mining methodologies to propose advanced solutions for predictive biomarker discovery. The strategy was focused on evaluating a combination of numeric-symbolic approaches for feature selection with the objective of obtaining the best combination of metabolites producing an effective and accurate predictive model. Relying first on numerical approaches, and especially on machine learning methods (SVM-RFE, RF, RF-RFE) and on univariate statistical analyses (ANOVA), a comparative study was performed on an original metabolomic dataset and reduced subsets. As resampling method, LOOCV was applied to minimize the risk of overfitting. The best k-features obtained with different scores of importance from the combination of these different approaches were compared and allowed determining the variable stabilities using Formal Concept Analysis. The results revealed the interest of RF-Gini combined with ANOVA for feature selection as these two complementary methods allowed selecting the 48 best candidates for prediction. Using linear logistic regression on this reduced dataset enabled us to obtain the best performances in terms of prediction accuracy and number of false positive with a model including 5 top variables. Therefore, these results highlighted the interest of feature selection methods and the importance of working on reduced datasets for the identification of predictive biomarkers issued from untargeted metabolomics data." @default.
- W2470233764 created "2016-07-22" @default.
- W2470233764 creator A5009991903 @default.
- W2470233764 creator A5026515643 @default.
- W2470233764 creator A5058713535 @default.
- W2470233764 creator A5069552188 @default.
- W2470233764 creator A5071949613 @default.
- W2470233764 creator A5090984354 @default.
- W2470233764 date "2016-07-08" @default.
- W2470233764 modified "2023-10-15" @default.
- W2470233764 title "Feature Selection Methods for Early Predictive Biomarker Discovery Using Untargeted Metabolomic Data" @default.
- W2470233764 cites W1520812622 @default.
- W2470233764 cites W1549912426 @default.
- W2470233764 cites W1566639089 @default.
- W2470233764 cites W1570713908 @default.
- W2470233764 cites W1968813633 @default.
- W2470233764 cites W1974777883 @default.
- W2470233764 cites W1988790447 @default.
- W2470233764 cites W1992747064 @default.
- W2470233764 cites W199584104 @default.
- W2470233764 cites W2000718436 @default.
- W2470233764 cites W2006617902 @default.
- W2470233764 cites W2009033874 @default.
- W2470233764 cites W2014499440 @default.
- W2470233764 cites W2017665047 @default.
- W2470233764 cites W2018618568 @default.
- W2470233764 cites W2032217388 @default.
- W2470233764 cites W2034030912 @default.
- W2470233764 cites W2048914567 @default.
- W2470233764 cites W2052290318 @default.
- W2470233764 cites W2059217091 @default.
- W2470233764 cites W2070262574 @default.
- W2470233764 cites W2079529928 @default.
- W2470233764 cites W2089181989 @default.
- W2470233764 cites W2095649738 @default.
- W2470233764 cites W2099692175 @default.
- W2470233764 cites W2102831150 @default.
- W2470233764 cites W2103773262 @default.
- W2470233764 cites W2113242816 @default.
- W2470233764 cites W2115425267 @default.
- W2470233764 cites W2119387367 @default.
- W2470233764 cites W2119479037 @default.
- W2470233764 cites W2125575989 @default.
- W2470233764 cites W2141270567 @default.
- W2470233764 cites W2143426320 @default.
- W2470233764 cites W2149309843 @default.
- W2470233764 cites W2155261257 @default.
- W2470233764 cites W2163186973 @default.
- W2470233764 cites W2164787288 @default.
- W2470233764 cites W2168590651 @default.
- W2470233764 cites W2325347090 @default.
- W2470233764 cites W2339886882 @default.
- W2470233764 cites W2911964244 @default.
- W2470233764 cites W4239510810 @default.
- W2470233764 cites W4251163770 @default.
- W2470233764 cites W4255318870 @default.
- W2470233764 doi "https://doi.org/10.3389/fmolb.2016.00030" @default.
- W2470233764 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4937038" @default.
- W2470233764 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27458587" @default.
- W2470233764 hasPublicationYear "2016" @default.
- W2470233764 type Work @default.
- W2470233764 sameAs 2470233764 @default.
- W2470233764 citedByCount "71" @default.
- W2470233764 countsByYear W24702337642017 @default.
- W2470233764 countsByYear W24702337642018 @default.
- W2470233764 countsByYear W24702337642019 @default.
- W2470233764 countsByYear W24702337642020 @default.
- W2470233764 countsByYear W24702337642021 @default.
- W2470233764 countsByYear W24702337642022 @default.
- W2470233764 countsByYear W24702337642023 @default.
- W2470233764 crossrefType "journal-article" @default.
- W2470233764 hasAuthorship W2470233764A5009991903 @default.
- W2470233764 hasAuthorship W2470233764A5026515643 @default.
- W2470233764 hasAuthorship W2470233764A5058713535 @default.
- W2470233764 hasAuthorship W2470233764A5069552188 @default.
- W2470233764 hasAuthorship W2470233764A5071949613 @default.
- W2470233764 hasAuthorship W2470233764A5090984354 @default.
- W2470233764 hasBestOaLocation W24702337641 @default.
- W2470233764 hasConcept C104317684 @default.
- W2470233764 hasConcept C116834253 @default.
- W2470233764 hasConcept C119857082 @default.
- W2470233764 hasConcept C124101348 @default.
- W2470233764 hasConcept C124535831 @default.
- W2470233764 hasConcept C148483581 @default.
- W2470233764 hasConcept C149782125 @default.
- W2470233764 hasConcept C151730666 @default.
- W2470233764 hasConcept C154945302 @default.
- W2470233764 hasConcept C161584116 @default.
- W2470233764 hasConcept C169258074 @default.
- W2470233764 hasConcept C177212765 @default.
- W2470233764 hasConcept C199163554 @default.
- W2470233764 hasConcept C207609745 @default.
- W2470233764 hasConcept C21565614 @default.
- W2470233764 hasConcept C22019652 @default.
- W2470233764 hasConcept C2779343474 @default.
- W2470233764 hasConcept C33923547 @default.
- W2470233764 hasConcept C41008148 @default.
- W2470233764 hasConcept C46111723 @default.
- W2470233764 hasConcept C50644808 @default.
- W2470233764 hasConcept C55493867 @default.