Matches in SemOpenAlex for { <https://semopenalex.org/work/W2470290936> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2470290936 abstract "Consider the problem of defining a continuous function f ( x ) which agrees with factorials at integers. There are many possible ways to do this. In fact, such a function can be constructed by taking any continuous definition of f ( x ) on [0,1] with f (0) = f (1) = 1 (such as f ( x ) = 1), and then extending the definition to all x > 1 by the formula f ( x + 1) = ( x + 1) f ( x ). This construction was discussed by David Fowler in [1] and [2]. For example, the choice f ( x ) = ½ x ( x − 1) + 1 results in a function that is differentiable everywhere, including at integers. However, this approach had already been overtaken in 1729, when Euler obtained the conclusive solution to the problem by defining what we now call the gamma function. Among all the possible functions that reproduce factorials, this is the ‘right’ one, in the sense that it is the only one satisfying a certain smoothness condition which we will specify below. Admittedly, Euler didn't know this. It is known as the Bohr-Mollerup theorem, and was only proved nearly two centuries later. First, a remark on notation: the notation Γ ( x ) for the gamma function, introduced by Legendre, is such that Γ ( n ) is actually ( n − 1)! instead of n !. Though this might seem a little perverse, it does result in some formulae becoming slightly neater. Some writers, including Fowler, write x ! for Γ ( x + 1), and refer to this as the ‘factorial function’. However, the notation Γ ( x ) is very firmly entrenched, and I will adhere to it here." @default.
- W2470290936 created "2016-07-22" @default.
- W2470290936 creator A5017896189 @default.
- W2470290936 date "2014-07-01" @default.
- W2470290936 modified "2023-09-23" @default.
- W2470290936 title "A fresh look at Euler's limit formula for the gamma function" @default.
- W2470290936 cites W2408593047 @default.
- W2470290936 cites W2469632700 @default.
- W2470290936 cites W2796398879 @default.
- W2470290936 cites W4242849907 @default.
- W2470290936 doi "https://doi.org/10.1017/s0025557200001261" @default.
- W2470290936 hasPublicationYear "2014" @default.
- W2470290936 type Work @default.
- W2470290936 sameAs 2470290936 @default.
- W2470290936 citedByCount "4" @default.
- W2470290936 countsByYear W24702909362015 @default.
- W2470290936 countsByYear W24702909362018 @default.
- W2470290936 countsByYear W24702909362019 @default.
- W2470290936 countsByYear W24702909362021 @default.
- W2470290936 crossrefType "journal-article" @default.
- W2470290936 hasAuthorship W2470290936A5017896189 @default.
- W2470290936 hasBestOaLocation W24702909361 @default.
- W2470290936 hasConcept C102634674 @default.
- W2470290936 hasConcept C114614502 @default.
- W2470290936 hasConcept C118615104 @default.
- W2470290936 hasConcept C134306372 @default.
- W2470290936 hasConcept C14036430 @default.
- W2470290936 hasConcept C151201525 @default.
- W2470290936 hasConcept C202444582 @default.
- W2470290936 hasConcept C202615002 @default.
- W2470290936 hasConcept C33923547 @default.
- W2470290936 hasConcept C45357846 @default.
- W2470290936 hasConcept C62884695 @default.
- W2470290936 hasConcept C78458016 @default.
- W2470290936 hasConcept C86803240 @default.
- W2470290936 hasConcept C94375191 @default.
- W2470290936 hasConceptScore W2470290936C102634674 @default.
- W2470290936 hasConceptScore W2470290936C114614502 @default.
- W2470290936 hasConceptScore W2470290936C118615104 @default.
- W2470290936 hasConceptScore W2470290936C134306372 @default.
- W2470290936 hasConceptScore W2470290936C14036430 @default.
- W2470290936 hasConceptScore W2470290936C151201525 @default.
- W2470290936 hasConceptScore W2470290936C202444582 @default.
- W2470290936 hasConceptScore W2470290936C202615002 @default.
- W2470290936 hasConceptScore W2470290936C33923547 @default.
- W2470290936 hasConceptScore W2470290936C45357846 @default.
- W2470290936 hasConceptScore W2470290936C62884695 @default.
- W2470290936 hasConceptScore W2470290936C78458016 @default.
- W2470290936 hasConceptScore W2470290936C86803240 @default.
- W2470290936 hasConceptScore W2470290936C94375191 @default.
- W2470290936 hasLocation W24702909361 @default.
- W2470290936 hasLocation W24702909362 @default.
- W2470290936 hasOpenAccess W2470290936 @default.
- W2470290936 hasPrimaryLocation W24702909361 @default.
- W2470290936 hasRelatedWork W1495324342 @default.
- W2470290936 hasRelatedWork W160267380 @default.
- W2470290936 hasRelatedWork W1615461178 @default.
- W2470290936 hasRelatedWork W1966637497 @default.
- W2470290936 hasRelatedWork W1979462201 @default.
- W2470290936 hasRelatedWork W1992762899 @default.
- W2470290936 hasRelatedWork W1993836903 @default.
- W2470290936 hasRelatedWork W2057654071 @default.
- W2470290936 hasRelatedWork W2079049417 @default.
- W2470290936 hasRelatedWork W2116299377 @default.
- W2470290936 hasRelatedWork W2316420424 @default.
- W2470290936 hasRelatedWork W2318802990 @default.
- W2470290936 hasRelatedWork W2330347257 @default.
- W2470290936 hasRelatedWork W2333442338 @default.
- W2470290936 hasRelatedWork W2495421012 @default.
- W2470290936 hasRelatedWork W2754430485 @default.
- W2470290936 hasRelatedWork W2804613599 @default.
- W2470290936 hasRelatedWork W2991337310 @default.
- W2470290936 hasRelatedWork W322561616 @default.
- W2470290936 hasRelatedWork W830665955 @default.
- W2470290936 isParatext "false" @default.
- W2470290936 isRetracted "false" @default.
- W2470290936 magId "2470290936" @default.
- W2470290936 workType "article" @default.