Matches in SemOpenAlex for { <https://semopenalex.org/work/W2470360319> ?p ?o ?g. }
- W2470360319 endingPage "3097" @default.
- W2470360319 startingPage "3089" @default.
- W2470360319 abstract "Abstract Motivation: Graphical models are often employed to interpret patterns of correlations observed in data through a network of interactions between the variables. Recently, Ising/Potts models, also known as Markov random fields, have been productively applied to diverse problems in biology, including the prediction of structural contacts from protein sequence data and the description of neural activity patterns. However, inference of such models is a challenging computational problem that cannot be solved exactly. Here, we describe the adaptive cluster expansion (ACE) method to quickly and accurately infer Ising or Potts models based on correlation data. ACE avoids overfitting by constructing a sparse network of interactions sufficient to reproduce the observed correlation data within the statistical error expected due to finite sampling. When convergence of the ACE algorithm is slow, we combine it with a Boltzmann Machine Learning algorithm (BML). We illustrate this method on a variety of biological and artificial datasets and compare it to state-of-the-art approximate methods such as Gaussian and pseudo-likelihood inference. Results: We show that ACE accurately reproduces the true parameters of the underlying model when they are known, and yields accurate statistical descriptions of both biological and artificial data. Models inferred by ACE more accurately describe the statistics of the data, including both the constrained low-order correlations and unconstrained higher-order correlations, compared to those obtained by faster Gaussian and pseudo-likelihood methods. These alternative approaches can recover the structure of the interaction network but typically not the correct strength of interactions, resulting in less accurate generative models. Availability and implementation: The ACE source code, user manual and tutorials with the example data and filtered correlations described herein are freely available on GitHub at https://github.com/johnbarton/ACE. Contacts: jpbarton@mit.edu, cocco@lps.ens.fr Supplementary information: Supplementary data are available at Bioinformatics online." @default.
- W2470360319 created "2016-07-22" @default.
- W2470360319 creator A5002693245 @default.
- W2470360319 creator A5011854237 @default.
- W2470360319 creator A5029064712 @default.
- W2470360319 creator A5036998304 @default.
- W2470360319 date "2016-06-21" @default.
- W2470360319 modified "2023-10-04" @default.
- W2470360319 title "ACE: adaptive cluster expansion for maximum entropy graphical model inference" @default.
- W2470360319 cites W1558524274 @default.
- W2470360319 cites W1823429634 @default.
- W2470360319 cites W1861406683 @default.
- W2470360319 cites W1951660422 @default.
- W2470360319 cites W1965839094 @default.
- W2470360319 cites W1977436723 @default.
- W2470360319 cites W1988758873 @default.
- W2470360319 cites W1995875735 @default.
- W2470360319 cites W1999677560 @default.
- W2470360319 cites W2008545402 @default.
- W2470360319 cites W2009494271 @default.
- W2470360319 cites W2014706477 @default.
- W2470360319 cites W2018490621 @default.
- W2470360319 cites W2034379782 @default.
- W2470360319 cites W2042492924 @default.
- W2470360319 cites W2048154580 @default.
- W2470360319 cites W2048310584 @default.
- W2470360319 cites W2051545676 @default.
- W2470360319 cites W2059151864 @default.
- W2470360319 cites W2061042699 @default.
- W2470360319 cites W2067427769 @default.
- W2470360319 cites W2076758466 @default.
- W2470360319 cites W2092572492 @default.
- W2470360319 cites W2101218312 @default.
- W2470360319 cites W2109091716 @default.
- W2470360319 cites W2125631472 @default.
- W2470360319 cites W2127760245 @default.
- W2470360319 cites W2130710252 @default.
- W2470360319 cites W2137566700 @default.
- W2470360319 cites W2146891463 @default.
- W2470360319 cites W2147238273 @default.
- W2470360319 cites W2160903198 @default.
- W2470360319 cites W2391698393 @default.
- W2470360319 cites W2950546693 @default.
- W2470360319 cites W3098376774 @default.
- W2470360319 cites W3098888484 @default.
- W2470360319 cites W3099405535 @default.
- W2470360319 cites W3100492388 @default.
- W2470360319 cites W3106333376 @default.
- W2470360319 doi "https://doi.org/10.1093/bioinformatics/btw328" @default.
- W2470360319 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27329863" @default.
- W2470360319 hasPublicationYear "2016" @default.
- W2470360319 type Work @default.
- W2470360319 sameAs 2470360319 @default.
- W2470360319 citedByCount "78" @default.
- W2470360319 countsByYear W24703603192016 @default.
- W2470360319 countsByYear W24703603192017 @default.
- W2470360319 countsByYear W24703603192018 @default.
- W2470360319 countsByYear W24703603192019 @default.
- W2470360319 countsByYear W24703603192020 @default.
- W2470360319 countsByYear W24703603192021 @default.
- W2470360319 countsByYear W24703603192022 @default.
- W2470360319 countsByYear W24703603192023 @default.
- W2470360319 crossrefType "journal-article" @default.
- W2470360319 hasAuthorship W2470360319A5002693245 @default.
- W2470360319 hasAuthorship W2470360319A5011854237 @default.
- W2470360319 hasAuthorship W2470360319A5029064712 @default.
- W2470360319 hasAuthorship W2470360319A5036998304 @default.
- W2470360319 hasBestOaLocation W24703603191 @default.
- W2470360319 hasConcept C11413529 @default.
- W2470360319 hasConcept C121332964 @default.
- W2470360319 hasConcept C121864883 @default.
- W2470360319 hasConcept C154945302 @default.
- W2470360319 hasConcept C155846161 @default.
- W2470360319 hasConcept C163716315 @default.
- W2470360319 hasConcept C22019652 @default.
- W2470360319 hasConcept C2776214188 @default.
- W2470360319 hasConcept C41008148 @default.
- W2470360319 hasConcept C50644808 @default.
- W2470360319 hasConcept C51329190 @default.
- W2470360319 hasConcept C62520636 @default.
- W2470360319 hasConcept C9679016 @default.
- W2470360319 hasConcept C98925819 @default.
- W2470360319 hasConceptScore W2470360319C11413529 @default.
- W2470360319 hasConceptScore W2470360319C121332964 @default.
- W2470360319 hasConceptScore W2470360319C121864883 @default.
- W2470360319 hasConceptScore W2470360319C154945302 @default.
- W2470360319 hasConceptScore W2470360319C155846161 @default.
- W2470360319 hasConceptScore W2470360319C163716315 @default.
- W2470360319 hasConceptScore W2470360319C22019652 @default.
- W2470360319 hasConceptScore W2470360319C2776214188 @default.
- W2470360319 hasConceptScore W2470360319C41008148 @default.
- W2470360319 hasConceptScore W2470360319C50644808 @default.
- W2470360319 hasConceptScore W2470360319C51329190 @default.
- W2470360319 hasConceptScore W2470360319C62520636 @default.
- W2470360319 hasConceptScore W2470360319C9679016 @default.
- W2470360319 hasConceptScore W2470360319C98925819 @default.
- W2470360319 hasIssue "20" @default.
- W2470360319 hasLocation W24703603191 @default.