Matches in SemOpenAlex for { <https://semopenalex.org/work/W2470566345> ?p ?o ?g. }
- W2470566345 abstract "Recognition of cattle based on muzzle point image pattern (nose print) is a well study problem in the field of animal biometrics, computer vision, pattern recognition and various application domains. Missed cattle, false insurance claims and relocation at slaughter houses are major problems throughout the world. Muzzle pattern of cattle is a suitable biometric trait to recognize them by extracted features from muzzle pattern by using computer vision and pattern recognition approaches. It is similar to human’s fingerprint recognition. However, the accuracy of animal biometric recognition systems is affected due to problems of low illumination condition, pose and recognition of animal at given distance. Feature selection is known to be a critical step in the design of pattern recognition and classifier for several reasons. It selects a discriminant feature vector set or pre-specified number of features from muzzle pattern database that leads to the best possible performance of the entire classifier in muzzle recognition of cattle. This book chapter presents a novel method of feature selection by using Hybrid Chaos Particle Swarm Optimization (PSO) and Bacterial Foraging Optimization (BFO) techniques. It has two parts: first, two types of chaotic mappings are introduced in different phase of hybrid algorithms which preserve the diversity of population and improve the global searching capability; (2) this book chapter exploited holistic feature approaches: Principal Component Analysis (PCA), Local Discriminant Analysis (LDA) and Discrete Cosine Transform (DCT) [28, 85] extract feature from the muzzle pattern images of cattle. Then, feature (eigenvector), fisher face and DCT feature vector are selected by applying hybrid PSO and BFO metaheuristic approach; it quickly find out the subspace of feature that is most beneficial to classification and recognition of muzzle pattern of cattle. This chapter provides with the stepping stone for future researches to unveil how swarm intelligence algorithms can solve the complex optimization problems and feature selection with helps to improve the cattle identification accuracy." @default.
- W2470566345 created "2016-07-22" @default.
- W2470566345 creator A5005861746 @default.
- W2470566345 creator A5047086693 @default.
- W2470566345 date "2016-01-01" @default.
- W2470566345 modified "2023-09-24" @default.
- W2470566345 title "Feature Selection and Recognition of Muzzle Point Image Pattern of Cattle by Using Hybrid Chaos BFO and PSO Algorithms" @default.
- W2470566345 cites W1498915505 @default.
- W2470566345 cites W1523682477 @default.
- W2470566345 cites W1535459486 @default.
- W2470566345 cites W1537747300 @default.
- W2470566345 cites W1560921017 @default.
- W2470566345 cites W1592179033 @default.
- W2470566345 cites W1614673366 @default.
- W2470566345 cites W180010315 @default.
- W2470566345 cites W1820051232 @default.
- W2470566345 cites W1966895859 @default.
- W2470566345 cites W1970442252 @default.
- W2470566345 cites W1984762043 @default.
- W2470566345 cites W1988641713 @default.
- W2470566345 cites W1988653006 @default.
- W2470566345 cites W1989702938 @default.
- W2470566345 cites W1991248646 @default.
- W2470566345 cites W1993885071 @default.
- W2470566345 cites W2000135657 @default.
- W2470566345 cites W2000240651 @default.
- W2470566345 cites W2022306346 @default.
- W2470566345 cites W2023943573 @default.
- W2470566345 cites W2024672209 @default.
- W2470566345 cites W2040628945 @default.
- W2470566345 cites W2056811412 @default.
- W2470566345 cites W2059655077 @default.
- W2470566345 cites W2061438946 @default.
- W2470566345 cites W2069514727 @default.
- W2470566345 cites W2070154551 @default.
- W2470566345 cites W2072132206 @default.
- W2470566345 cites W2074101794 @default.
- W2470566345 cites W2074917428 @default.
- W2470566345 cites W2076293397 @default.
- W2470566345 cites W2077215180 @default.
- W2470566345 cites W2095405940 @default.
- W2470566345 cites W2102892532 @default.
- W2470566345 cites W2107941094 @default.
- W2470566345 cites W2111743655 @default.
- W2470566345 cites W2118044993 @default.
- W2470566345 cites W2121648876 @default.
- W2470566345 cites W2122111042 @default.
- W2470566345 cites W2122122715 @default.
- W2470566345 cites W2123066915 @default.
- W2470566345 cites W2130140018 @default.
- W2470566345 cites W2135463994 @default.
- W2470566345 cites W2143153057 @default.
- W2470566345 cites W2148002238 @default.
- W2470566345 cites W2152195021 @default.
- W2470566345 cites W2154943049 @default.
- W2470566345 cites W2160694855 @default.
- W2470566345 cites W2165299997 @default.
- W2470566345 cites W2168162153 @default.
- W2470566345 cites W2168819089 @default.
- W2470566345 cites W2169245194 @default.
- W2470566345 cites W2171333233 @default.
- W2470566345 cites W2224848586 @default.
- W2470566345 cites W2240174013 @default.
- W2470566345 cites W2470886189 @default.
- W2470566345 cites W2493540826 @default.
- W2470566345 cites W259286310 @default.
- W2470566345 cites W2963103847 @default.
- W2470566345 cites W3100933494 @default.
- W2470566345 cites W36506744 @default.
- W2470566345 cites W39649792 @default.
- W2470566345 cites W4230073927 @default.
- W2470566345 cites W4251423627 @default.
- W2470566345 cites W4292880809 @default.
- W2470566345 cites W54675925 @default.
- W2470566345 cites W58562589 @default.
- W2470566345 doi "https://doi.org/10.1007/978-3-319-30340-6_30" @default.
- W2470566345 hasPublicationYear "2016" @default.
- W2470566345 type Work @default.
- W2470566345 sameAs 2470566345 @default.
- W2470566345 citedByCount "4" @default.
- W2470566345 countsByYear W24705663452016 @default.
- W2470566345 countsByYear W24705663452017 @default.
- W2470566345 countsByYear W24705663452019 @default.
- W2470566345 countsByYear W24705663452022 @default.
- W2470566345 crossrefType "book-chapter" @default.
- W2470566345 hasAuthorship W2470566345A5005861746 @default.
- W2470566345 hasAuthorship W2470566345A5047086693 @default.
- W2470566345 hasConcept C119857082 @default.
- W2470566345 hasConcept C127413603 @default.
- W2470566345 hasConcept C138885662 @default.
- W2470566345 hasConcept C148483581 @default.
- W2470566345 hasConcept C153180895 @default.
- W2470566345 hasConcept C154945302 @default.
- W2470566345 hasConcept C172227984 @default.
- W2470566345 hasConcept C184297639 @default.
- W2470566345 hasConcept C27438332 @default.
- W2470566345 hasConcept C2776401178 @default.
- W2470566345 hasConcept C2780673119 @default.
- W2470566345 hasConcept C31972630 @default.
- W2470566345 hasConcept C41008148 @default.