Matches in SemOpenAlex for { <https://semopenalex.org/work/W2470660892> ?p ?o ?g. }
- W2470660892 endingPage "495" @default.
- W2470660892 startingPage "481" @default.
- W2470660892 abstract "AEI Aquaculture Environment Interactions Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections AEI 8:481-495 (2016) - DOI: https://doi.org/10.3354/aei00189 Methane distribution, sources, and sinks in an aquaculture bay (Sanggou Bay, China) Jing Hou1,2, Guiling Zhang1,2,*, Mingshuang Sun1, Wangwang Ye1, Da Song1 1Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China 2Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, PR China *Corresponding author: guilingzhang@ouc.edu.cn ABSTRACT: From 2012 to 2015, we investigated methane (CH4) distribution, air-sea fluxes, and sediment-water fluxes in an aquaculture bay (Sanggou Bay, China), and estimated the input of CH4 from potential land sources including rivers and groundwater. Surface water CH4 in the bay ranged from 3.0 to 302 nM, while bottom CH4 was usually higher due to sediment release. Water column CH4 in summer and autumn was 3 to 10 times that in spring and winter due to seasonal variation in water temperature and land source inputs. Surface CH4 was higher in kelp and scallop polyculture zones than in other culture zones and outside the bay, suggesting the influence of aquaculture activities. CH4 concentrations were 123 to 2190 nM in rivers around the bay, and 1.6 to 405 nM in groundwater along the shoreline; both showed great spatial and temporal variations. Sediment-water CH4 fluxes ranged from 0.73 to 8.26 µmol m-2 d-1, with those in bivalve culture zones higher than in polyculture zones. Sea-air CH4 fluxes ranged from 2.1 to 123.2 µmol m-2 d-1 (mean 48.2 µmol m-2 d-1) and showed seasonal variations. CH4 budget in Sanggou Bay showed that groundwater input (4.2 × 105 mol yr-1) was the largest source of CH4, followed by sediment release (2.6 × 105 mol yr-1) and riverine input (1.4 × 105 mol yr-1), while sea-to-air release (2.5 × 106 mol yr-1) and export from the bay to the Yellow Sea (8.8 × 105 mol yr-1) were the dominant CH4 sinks. Net water column production-oxidation was estimated preliminarily to produce 1.7 × 105 mol CH4 yr-1. However, there was a great imbalance of sources and sinks, with an apparent missing source of 2.4 × 106 mol yr-1 that was mostly due to an underestimate of in situ water column production and CH4 release from the sediments. KEY WORDS: CH4 · Sanggou Bay · Production · Sediment–water exchanges · Air-sea fluxes · Aquaculture Full text in pdf format PreviousCite this article as: Hou J, Zhang G, Sun M, Ye W, Song D (2016) Methane distribution, sources, and sinks in an aquaculture bay (Sanggou Bay, China). Aquacult Environ Interact 8:481-495. https://doi.org/10.3354/aei00189 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in AEI Vol. 8. Online publication date: August 23, 2016 Print ISSN: 1869-215X; Online ISSN: 1869-7534 Copyright © 2016 Inter-Research." @default.
- W2470660892 created "2016-07-22" @default.
- W2470660892 creator A5038993935 @default.
- W2470660892 creator A5040247904 @default.
- W2470660892 creator A5055291760 @default.
- W2470660892 creator A5065780092 @default.
- W2470660892 creator A5076193367 @default.
- W2470660892 date "2016-08-23" @default.
- W2470660892 modified "2023-09-25" @default.
- W2470660892 title "Methane distribution, sources, and sinks in an aquaculture bay (Sanggou Bay, China)" @default.
- W2470660892 cites W1513196349 @default.
- W2470660892 cites W1600897084 @default.
- W2470660892 cites W1924444317 @default.
- W2470660892 cites W1966378103 @default.
- W2470660892 cites W1966757607 @default.
- W2470660892 cites W1969804341 @default.
- W2470660892 cites W1973917406 @default.
- W2470660892 cites W1975425044 @default.
- W2470660892 cites W1977331373 @default.
- W2470660892 cites W1978457402 @default.
- W2470660892 cites W1979245770 @default.
- W2470660892 cites W1987191545 @default.
- W2470660892 cites W1992344202 @default.
- W2470660892 cites W1996068223 @default.
- W2470660892 cites W1996979269 @default.
- W2470660892 cites W1997695324 @default.
- W2470660892 cites W1998192654 @default.
- W2470660892 cites W1998476593 @default.
- W2470660892 cites W2009254038 @default.
- W2470660892 cites W2010439611 @default.
- W2470660892 cites W2011563303 @default.
- W2470660892 cites W2013823412 @default.
- W2470660892 cites W2014696395 @default.
- W2470660892 cites W2019652860 @default.
- W2470660892 cites W2019974877 @default.
- W2470660892 cites W2021202835 @default.
- W2470660892 cites W2022791523 @default.
- W2470660892 cites W2026919235 @default.
- W2470660892 cites W2029116556 @default.
- W2470660892 cites W2038239334 @default.
- W2470660892 cites W2040479220 @default.
- W2470660892 cites W2042843036 @default.
- W2470660892 cites W2043011133 @default.
- W2470660892 cites W2058598170 @default.
- W2470660892 cites W2060034448 @default.
- W2470660892 cites W2083232572 @default.
- W2470660892 cites W2090020123 @default.
- W2470660892 cites W2090725111 @default.
- W2470660892 cites W2094300388 @default.
- W2470660892 cites W2098569468 @default.
- W2470660892 cites W2112183593 @default.
- W2470660892 cites W2119402634 @default.
- W2470660892 cites W2142213607 @default.
- W2470660892 cites W2145431748 @default.
- W2470660892 cites W2149570690 @default.
- W2470660892 cites W2149932227 @default.
- W2470660892 cites W2151896453 @default.
- W2470660892 cites W2151941718 @default.
- W2470660892 cites W2153720595 @default.
- W2470660892 cites W2158016851 @default.
- W2470660892 cites W2171762367 @default.
- W2470660892 cites W2972596648 @default.
- W2470660892 cites W4213327538 @default.
- W2470660892 doi "https://doi.org/10.3354/aei00189" @default.
- W2470660892 hasPublicationYear "2016" @default.
- W2470660892 type Work @default.
- W2470660892 sameAs 2470660892 @default.
- W2470660892 citedByCount "10" @default.
- W2470660892 countsByYear W24706608922017 @default.
- W2470660892 countsByYear W24706608922018 @default.
- W2470660892 countsByYear W24706608922019 @default.
- W2470660892 countsByYear W24706608922020 @default.
- W2470660892 countsByYear W24706608922022 @default.
- W2470660892 countsByYear W24706608922023 @default.
- W2470660892 crossrefType "journal-article" @default.
- W2470660892 hasAuthorship W2470660892A5038993935 @default.
- W2470660892 hasAuthorship W2470660892A5040247904 @default.
- W2470660892 hasAuthorship W2470660892A5055291760 @default.
- W2470660892 hasAuthorship W2470660892A5065780092 @default.
- W2470660892 hasAuthorship W2470660892A5076193367 @default.
- W2470660892 hasBestOaLocation W24706608921 @default.
- W2470660892 hasConcept C111368507 @default.
- W2470660892 hasConcept C115880899 @default.
- W2470660892 hasConcept C127313418 @default.
- W2470660892 hasConcept C151730666 @default.
- W2470660892 hasConcept C166957645 @default.
- W2470660892 hasConcept C191935318 @default.
- W2470660892 hasConcept C205649164 @default.
- W2470660892 hasConcept C2816523 @default.
- W2470660892 hasConcept C2909208804 @default.
- W2470660892 hasConcept C39432304 @default.
- W2470660892 hasConcept C505870484 @default.
- W2470660892 hasConcept C8625798 @default.
- W2470660892 hasConcept C86803240 @default.
- W2470660892 hasConcept C86909935 @default.
- W2470660892 hasConcept C87717796 @default.
- W2470660892 hasConceptScore W2470660892C111368507 @default.
- W2470660892 hasConceptScore W2470660892C115880899 @default.