Matches in SemOpenAlex for { <https://semopenalex.org/work/W2470984923> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2470984923 endingPage "209" @default.
- W2470984923 startingPage "209" @default.
- W2470984923 abstract "Feature subset selection and extraction algorithms are actively and extensively studied in machine learning literature to reduce the dimensionality of feature space, since high dimensional data sets are generally not efficiently and effectively handled by a large array of machine learning and pattern recognition algorithms. When we stride into the analysis of large scale bioinformatics data sets, such as microarray gene expression data sets, the high dimensionality of feature space compounded with the low dimensionality of sample space, creates even more problems for data analysis algorithms. Two foremost characteristics of microarray gene expression data sets are: (1) the correlation between features (genes) and (2) the availability of domain knowledge in computable format. In this dissertation, we will study effective feature selection and extraction algorithms with applications to the analysis of the new emerging data sets in the bioinformatics domain. Microarray gene expression data set, the result of large scale RNA profiling techniques, is our primary focus in this thesis. Several novel feature (gene) selection and extraction algorithms are proposed to deal with peculiarities on microarray gene expression data set. To address the first characteristic of the microarray gene expression data set, we first propose a general feature selection algorithm called Boost Feature Subset Selection (BFSS) based on permutation analysis to broaden the scope of selected gene set and thus improve classification performance. In BFSS, subsequent features to be selected focus on those samples where previously selected features fail. Our experiments showed the benefit of BFSS for t-score and S2N (signal to noise) based single gene scores on a variety of publicly available microarray gene expression data sets. We then examine the correlations among features (genes) explicitly to see if such correlations are informative for the purpose of sample classification. This results in our gene extraction algorithm called virtual gene. A virtual gene is a group of genes whose expression levels are combined linearly. The combined expression levels of a virtual gene instead of the real gene expression levels are used for sample classification. Our experiments confirm that by taking into consideration the correlations between gene pairs, we could indeed build a better sample classifier. Microarray gene expression data set only represents one aspect of our knowledge of the underlying biological system. Currently there are lots of biological knowledge in computable format that can be accessed from Internet. Continue to address the second characteristic of the microarray gene expression data set, we investigate the integration of domain knowledge, such as those imbedded in gene ontology annotations, for the use of gene selection and extraction. (Abstract shortened by UMI.)" @default.
- W2470984923 created "2016-07-22" @default.
- W2470984923 creator A5013588572 @default.
- W2470984923 creator A5023042666 @default.
- W2470984923 date "2006-01-01" @default.
- W2470984923 modified "2023-09-28" @default.
- W2470984923 title "Integrated feature subset selection/extraction with applications in bioinformatics" @default.
- W2470984923 hasPublicationYear "2006" @default.
- W2470984923 type Work @default.
- W2470984923 sameAs 2470984923 @default.
- W2470984923 citedByCount "0" @default.
- W2470984923 crossrefType "dissertation" @default.
- W2470984923 hasAuthorship W2470984923A5013588572 @default.
- W2470984923 hasAuthorship W2470984923A5023042666 @default.
- W2470984923 hasConcept C104317684 @default.
- W2470984923 hasConcept C111030470 @default.
- W2470984923 hasConcept C119857082 @default.
- W2470984923 hasConcept C124101348 @default.
- W2470984923 hasConcept C148483581 @default.
- W2470984923 hasConcept C150194340 @default.
- W2470984923 hasConcept C153180895 @default.
- W2470984923 hasConcept C154945302 @default.
- W2470984923 hasConcept C18431079 @default.
- W2470984923 hasConcept C41008148 @default.
- W2470984923 hasConcept C52622490 @default.
- W2470984923 hasConcept C54355233 @default.
- W2470984923 hasConcept C548314002 @default.
- W2470984923 hasConcept C60644358 @default.
- W2470984923 hasConcept C70518039 @default.
- W2470984923 hasConcept C8415881 @default.
- W2470984923 hasConcept C86803240 @default.
- W2470984923 hasConcept C95371953 @default.
- W2470984923 hasConceptScore W2470984923C104317684 @default.
- W2470984923 hasConceptScore W2470984923C111030470 @default.
- W2470984923 hasConceptScore W2470984923C119857082 @default.
- W2470984923 hasConceptScore W2470984923C124101348 @default.
- W2470984923 hasConceptScore W2470984923C148483581 @default.
- W2470984923 hasConceptScore W2470984923C150194340 @default.
- W2470984923 hasConceptScore W2470984923C153180895 @default.
- W2470984923 hasConceptScore W2470984923C154945302 @default.
- W2470984923 hasConceptScore W2470984923C18431079 @default.
- W2470984923 hasConceptScore W2470984923C41008148 @default.
- W2470984923 hasConceptScore W2470984923C52622490 @default.
- W2470984923 hasConceptScore W2470984923C54355233 @default.
- W2470984923 hasConceptScore W2470984923C548314002 @default.
- W2470984923 hasConceptScore W2470984923C60644358 @default.
- W2470984923 hasConceptScore W2470984923C70518039 @default.
- W2470984923 hasConceptScore W2470984923C8415881 @default.
- W2470984923 hasConceptScore W2470984923C86803240 @default.
- W2470984923 hasConceptScore W2470984923C95371953 @default.
- W2470984923 hasLocation W24709849231 @default.
- W2470984923 hasOpenAccess W2470984923 @default.
- W2470984923 hasPrimaryLocation W24709849231 @default.
- W2470984923 hasRelatedWork W1495216736 @default.
- W2470984923 hasRelatedWork W1600551220 @default.
- W2470984923 hasRelatedWork W1734661877 @default.
- W2470984923 hasRelatedWork W182145428 @default.
- W2470984923 hasRelatedWork W1964599014 @default.
- W2470984923 hasRelatedWork W1976734130 @default.
- W2470984923 hasRelatedWork W2016703417 @default.
- W2470984923 hasRelatedWork W2045741102 @default.
- W2470984923 hasRelatedWork W2097181769 @default.
- W2470984923 hasRelatedWork W2108244056 @default.
- W2470984923 hasRelatedWork W2160511690 @default.
- W2470984923 hasRelatedWork W2171280163 @default.
- W2470984923 hasRelatedWork W2177229857 @default.
- W2470984923 hasRelatedWork W2186915055 @default.
- W2470984923 hasRelatedWork W2343938190 @default.
- W2470984923 hasRelatedWork W2356234881 @default.
- W2470984923 hasRelatedWork W2768357765 @default.
- W2470984923 hasRelatedWork W2891445621 @default.
- W2470984923 hasRelatedWork W3157698079 @default.
- W2470984923 hasRelatedWork W3195809552 @default.
- W2470984923 isParatext "false" @default.
- W2470984923 isRetracted "false" @default.
- W2470984923 magId "2470984923" @default.
- W2470984923 workType "dissertation" @default.