Matches in SemOpenAlex for { <https://semopenalex.org/work/W2470991431> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2470991431 endingPage "269" @default.
- W2470991431 startingPage "269" @default.
- W2470991431 abstract "This study investigates different approaches to system level modeling and optimization. Models developed in this work differ from existing system level models not only in their formulation but also in the extent of their dependence on the available experimental data. The emphasis in these models is to integrate the science of the problem with the knowledge extracted from available experimental data such that accurate predictions of complex phenomena are possible within a reasonable time frame. Neural network based models have been used with genetic algorithms to develop a procedure which enables the prediction and optimization of emissions over transient cycles such as the federal test procedure (FTP) cycle in less than real time. Methods to improve the performance and reduce the dependence on training data for these neural network based models have been developed and tested. The most important of these methods involves incorporating a physical model within the neural network functions itself. This idea has been extended in a proposed new approach to soot modeling in which weights similar to those used in neural networks are embedded inside the physical model itself. This integrated model needs a different training method but learns from data just like a conventional neural network. It has the advantage of the model physics inherent in the physical model. Similar ideas have been used to propose a new approach to system level NOx modeling using scaling arguments based on phenomenological grounds. Finally, experimental data has been used to unify model parameters inside a diesel particulate filter (DPF) model such that the model can be used over any operating condition without needing to describe the particular physical characteristics of the particulate deposit inside the trap at that particular operating condition. Insight gained from experimental data has been used to propose a theoretical method of estimating the mass trapped in the DPF from the pressure drop across it. System integration issues encountered during running a complete engine system model comprising of heat release, emission and DPF models have been discussed." @default.
- W2470991431 created "2016-07-22" @default.
- W2470991431 creator A5015653921 @default.
- W2470991431 creator A5056106733 @default.
- W2470991431 date "2005-01-01" @default.
- W2470991431 modified "2023-10-16" @default.
- W2470991431 title "Data driven system level modeling for diesel engines" @default.
- W2470991431 hasPublicationYear "2005" @default.
- W2470991431 type Work @default.
- W2470991431 sameAs 2470991431 @default.
- W2470991431 citedByCount "6" @default.
- W2470991431 crossrefType "journal-article" @default.
- W2470991431 hasAuthorship W2470991431A5015653921 @default.
- W2470991431 hasAuthorship W2470991431A5056106733 @default.
- W2470991431 hasConcept C105795698 @default.
- W2470991431 hasConcept C111919701 @default.
- W2470991431 hasConcept C119857082 @default.
- W2470991431 hasConcept C126042441 @default.
- W2470991431 hasConcept C154945302 @default.
- W2470991431 hasConcept C17744445 @default.
- W2470991431 hasConcept C199539241 @default.
- W2470991431 hasConcept C2776359362 @default.
- W2470991431 hasConcept C2780799671 @default.
- W2470991431 hasConcept C33923547 @default.
- W2470991431 hasConcept C41008148 @default.
- W2470991431 hasConcept C50644808 @default.
- W2470991431 hasConcept C55037315 @default.
- W2470991431 hasConcept C76155785 @default.
- W2470991431 hasConcept C94625758 @default.
- W2470991431 hasConceptScore W2470991431C105795698 @default.
- W2470991431 hasConceptScore W2470991431C111919701 @default.
- W2470991431 hasConceptScore W2470991431C119857082 @default.
- W2470991431 hasConceptScore W2470991431C126042441 @default.
- W2470991431 hasConceptScore W2470991431C154945302 @default.
- W2470991431 hasConceptScore W2470991431C17744445 @default.
- W2470991431 hasConceptScore W2470991431C199539241 @default.
- W2470991431 hasConceptScore W2470991431C2776359362 @default.
- W2470991431 hasConceptScore W2470991431C2780799671 @default.
- W2470991431 hasConceptScore W2470991431C33923547 @default.
- W2470991431 hasConceptScore W2470991431C41008148 @default.
- W2470991431 hasConceptScore W2470991431C50644808 @default.
- W2470991431 hasConceptScore W2470991431C55037315 @default.
- W2470991431 hasConceptScore W2470991431C76155785 @default.
- W2470991431 hasConceptScore W2470991431C94625758 @default.
- W2470991431 hasLocation W24709914311 @default.
- W2470991431 hasOpenAccess W2470991431 @default.
- W2470991431 hasPrimaryLocation W24709914311 @default.
- W2470991431 hasRelatedWork W1565185041 @default.
- W2470991431 hasRelatedWork W1569559342 @default.
- W2470991431 hasRelatedWork W1680793030 @default.
- W2470991431 hasRelatedWork W1918865680 @default.
- W2470991431 hasRelatedWork W2163047117 @default.
- W2470991431 hasRelatedWork W2164917680 @default.
- W2470991431 hasRelatedWork W2220010994 @default.
- W2470991431 hasRelatedWork W2272181149 @default.
- W2470991431 hasRelatedWork W2273726637 @default.
- W2470991431 hasRelatedWork W2752226133 @default.
- W2470991431 hasRelatedWork W2808708356 @default.
- W2470991431 hasRelatedWork W2892922101 @default.
- W2470991431 hasRelatedWork W3081295148 @default.
- W2470991431 hasRelatedWork W3083368431 @default.
- W2470991431 hasRelatedWork W3153522897 @default.
- W2470991431 hasRelatedWork W3158940529 @default.
- W2470991431 hasRelatedWork W3159951847 @default.
- W2470991431 hasRelatedWork W3161780276 @default.
- W2470991431 hasRelatedWork W632196279 @default.
- W2470991431 hasRelatedWork W2185292379 @default.
- W2470991431 isParatext "false" @default.
- W2470991431 isRetracted "false" @default.
- W2470991431 magId "2470991431" @default.
- W2470991431 workType "article" @default.