Matches in SemOpenAlex for { <https://semopenalex.org/work/W2471363128> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2471363128 abstract "Processors with large numbers of cores are becoming commonplace. In order to utilise theavailable resources in such systems, the programming paradigm has to move towards increased parallelism. However, increased parallelism does not necessarily lead to better performance. Parallel programming models have to provide not only flexible ways of definingparallel tasks, but also efficient methods to manage the created tasks. Moreover, in a general-purpose system, applications residing in the system compete for the shared resources. Threadand task scheduling in such a multiprogrammed multithreaded environment is a significant challenge.In this thesis, we introduce a new task-based parallel reduction model, called the Glasgow Parallel Reduction Machine (GPRM). Our main objective is to provide high performance while maintaining ease of programming. GPRM supports native parallelism; it provides a modular way of expressing parallel tasks and the communication patterns between them. Compiling a GPRM program results in an Intermediate Representation (IR) containing useful information about tasks, their dependencies, as well as the initial mapping information. This compile-time information helps reduce the overhead of runtime task scheduling and is key to high performance. Generally speaking, the granularity and the number of tasks are major factors in achieving high performance. These factors are even more important in the case of GPRM, as it is highly dependent on tasks, rather than threads.We use three basic benchmarks to provide a detailed comparison of GPRM with Intel OpenMP, Cilk Plus, and Threading Building Blocks (TBB) on the Intel Xeon Phi, and with GNU OpenMP on the Tilera TILEPro64. GPRM shows superior performance in almost all cases, only by controlling the number of tasks. GPRM also provides a low-overhead mechanism, called “Global Sharing”, which improves performance in multiprogramming situations.We use OpenMP, as the most popular model for shared-memory parallel programming as the main GPRM competitor for solving three well-known problems on both platforms: LU factorisation of Sparse Matrices, Image Convolution, and Linked List Processing. We focus on proposing solutions that best fit into the GPRM’s model of execution. GPRM outperforms OpenMP in all cases on the TILEPro64. On the Xeon Phi, our solution for the LU Factorisation results in notable performance improvement for sparse matrices with large numbers of small blocks. We investigate the overhead of GPRM’s task creation and distribution for very short computations using the Image Convolution benchmark. We show that this overhead can be mitigated by combining smaller tasks into larger ones. As a result, GPRM can outperform OpenMP for convolving large 2D matrices on the Xeon Phi. Finally, we demonstrate that our parallel worksharing construct provides an efficient solution for Linked List processing and performs better than OpenMP implementations on the Xeon Phi.The results are very promising, as they verify that our parallel programming framework for manycore processors is flexible and scalable, and can provide high performance withoutsacrificing productivity." @default.
- W2471363128 created "2016-07-22" @default.
- W2471363128 creator A5065152824 @default.
- W2471363128 date "2016-04-10" @default.
- W2471363128 modified "2023-09-23" @default.
- W2471363128 title "GPRM : a high performance programming framework for manycore processors" @default.
- W2471363128 hasPublicationYear "2016" @default.
- W2471363128 type Work @default.
- W2471363128 sameAs 2471363128 @default.
- W2471363128 citedByCount "1" @default.
- W2471363128 countsByYear W24713631282017 @default.
- W2471363128 crossrefType "dissertation" @default.
- W2471363128 hasAuthorship W2471363128A5065152824 @default.
- W2471363128 hasConcept C118524514 @default.
- W2471363128 hasConcept C137364921 @default.
- W2471363128 hasConcept C138101251 @default.
- W2471363128 hasConcept C162324750 @default.
- W2471363128 hasConcept C169590947 @default.
- W2471363128 hasConcept C173608175 @default.
- W2471363128 hasConcept C199360897 @default.
- W2471363128 hasConcept C206729178 @default.
- W2471363128 hasConcept C21547014 @default.
- W2471363128 hasConcept C2780870223 @default.
- W2471363128 hasConcept C2781172179 @default.
- W2471363128 hasConcept C34165917 @default.
- W2471363128 hasConcept C41008148 @default.
- W2471363128 hasConcept C42992933 @default.
- W2471363128 hasConcept C61483411 @default.
- W2471363128 hasConcept C96972482 @default.
- W2471363128 hasConceptScore W2471363128C118524514 @default.
- W2471363128 hasConceptScore W2471363128C137364921 @default.
- W2471363128 hasConceptScore W2471363128C138101251 @default.
- W2471363128 hasConceptScore W2471363128C162324750 @default.
- W2471363128 hasConceptScore W2471363128C169590947 @default.
- W2471363128 hasConceptScore W2471363128C173608175 @default.
- W2471363128 hasConceptScore W2471363128C199360897 @default.
- W2471363128 hasConceptScore W2471363128C206729178 @default.
- W2471363128 hasConceptScore W2471363128C21547014 @default.
- W2471363128 hasConceptScore W2471363128C2780870223 @default.
- W2471363128 hasConceptScore W2471363128C2781172179 @default.
- W2471363128 hasConceptScore W2471363128C34165917 @default.
- W2471363128 hasConceptScore W2471363128C41008148 @default.
- W2471363128 hasConceptScore W2471363128C42992933 @default.
- W2471363128 hasConceptScore W2471363128C61483411 @default.
- W2471363128 hasConceptScore W2471363128C96972482 @default.
- W2471363128 hasLocation W24713631281 @default.
- W2471363128 hasOpenAccess W2471363128 @default.
- W2471363128 hasPrimaryLocation W24713631281 @default.
- W2471363128 hasRelatedWork W190121517 @default.
- W2471363128 hasRelatedWork W2065911765 @default.
- W2471363128 hasRelatedWork W2073458162 @default.
- W2471363128 hasRelatedWork W2085451024 @default.
- W2471363128 hasRelatedWork W2253604288 @default.
- W2471363128 hasRelatedWork W2255649299 @default.
- W2471363128 hasRelatedWork W2281554452 @default.
- W2471363128 hasRelatedWork W2294367932 @default.
- W2471363128 hasRelatedWork W2335650312 @default.
- W2471363128 hasRelatedWork W2763393622 @default.
- W2471363128 hasRelatedWork W2784409032 @default.
- W2471363128 hasRelatedWork W2906681030 @default.
- W2471363128 hasRelatedWork W2910126074 @default.
- W2471363128 hasRelatedWork W2915755582 @default.
- W2471363128 hasRelatedWork W2978671875 @default.
- W2471363128 hasRelatedWork W3004473970 @default.
- W2471363128 hasRelatedWork W3006111633 @default.
- W2471363128 hasRelatedWork W3026486579 @default.
- W2471363128 hasRelatedWork W3036675073 @default.
- W2471363128 hasRelatedWork W3085955350 @default.
- W2471363128 isParatext "false" @default.
- W2471363128 isRetracted "false" @default.
- W2471363128 magId "2471363128" @default.
- W2471363128 workType "dissertation" @default.