Matches in SemOpenAlex for { <https://semopenalex.org/work/W2471374208> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2471374208 endingPage "545" @default.
- W2471374208 startingPage "545" @default.
- W2471374208 abstract "first_page settings Order Article Reprints Font Type: Arial Georgia Verdana Font Size: Aa Aa Aa Line Spacing: Column Width: Background: Open AccessEditorial Electrical Power and Energy Systems for Transportation Applications by Paul Stewart 1,* and Chris Bingham 2 1 Institute for Innovation in Sustainable Engineering, Lonsdale House, Derby DE1 3EE, UK 2 School of Engineering, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK * Author to whom correspondence should be addressed. Energies 2016, 9(7), 545; https://doi.org/10.3390/en9070545 Received: 11 July 2016 / Accepted: 13 July 2016 / Published: 14 July 2016 (This article belongs to the Special Issue Electrical Power and Energy Systems for Transportation Applications) Download Download PDF Download PDF with Cover Download XML Download Epub Browse Figure Versions Notes This book contains the successful invited submissions [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25] to a Special Issue of Energies on the subject area of “Electrical Power and Energy Systems for Transportation Applications”.Electrical power and energy systems are at the forefront of application developments in, for example, more-electric and all-electric aircraft, electric and hybrid road vehicles, and marine propulsion applications. The associated hardware, technologies, and control methods are crucial to achieving critical global targets in energy efficiency, low-carbon, and low-emissions operations. The greatest challenges occur when we combine new technologies at large-scale and often complex system levels.Topics of interest for the call included, but were not limited to: Novel Electrical Power Systems architectures and technologies;Energy vectors, integration with renewables, power and energy dense machines, converters and energy storage;Air, land, and sea vehicles; electrical propulsion and actuation for land, sea, and air vehicles;Electrical Machines, Drives, Systems, and Applications—AC and DC machines and drives;Multiscale systems modeling; remote monitoring and diagnosis;Power Electronic Systems—Converters and emerging technologies;Modeling simulation and control, reliability and fault tolerance, safety critical operation;Electrical Power Generation Systems—Modeling and simulation of electrical power systems;Load management; power quality; distribution reliability; distributed and islanded power systems, sensor networks, communication and control;Electrical Power Systems Modeling and Control—Modeling and control methodologies and applications;Intelligent systems; optimization and advanced heuristics; adaptive systems; robust control.Response to our call was excellent, with the following statistics: Submissions: (101);Publications: (25);Rejections: (76);Article Types: Review Article (0); Research Article (25);Authors’ geographical distribution (published papers): China (16)Belgium (3)Spain (2)Korea (2)Germany (2) Published submissions inform the broad spectrum of technologies interfacing energy with transport and fall into four general areas of Renewables and Transmission, Generators, Batteries, and Electric Vehicles, as exemplified in Figure 1.We found the task of editing and selecting papers for this collection to be both stimulating and rewarding. We would also like to thank the staff and reviewers for their efforts and input. ReferencesZhang, Y.; Li, M.; Kang, Y. PID Controller Design for UPS Three-Phase Inverters Considering Magnetic Coupling. Energies 2014, 7, 8036–8055. [Google Scholar] [CrossRef]Long, B.; Jeong, T.W.; Deuk Lee, J.; Jung, Y.C.; Chong, K.T. Energy Management of a Hybrid AC-DC Micro-Grid Based on a Battery Testing System. Energies 2015, 8, 1181–1194. [Google Scholar] [CrossRef]Yang, Y.; Zhang, W.; Niu, L.; Jiang, J. Coordinated Charging Strategy for Electric Taxis in Temporal and Spatial Scale. Energies 2015, 8, 1256–1272. [Google Scholar] [CrossRef]Leemput, N.; Geth, F.; Van Roy, J.; Olivella-Rosell, P.; Driesen, J.; Sumper, A. MV and LV Residential Grid Impact of Combined Slow and Fast Charging of Electric Vehicles. Energies 2015, 8, 1760–1783. [Google Scholar] [CrossRef][Green Version]Liu, W.; Ge, R.; Lv, Q.; Li, H.; Ge, J. Research on a Small Signal Stability Region Boundary Model of the Interconnected Power System with Large-Scale Wind Power. Energies 2015, 8, 2312–2336. [Google Scholar] [CrossRef]Kordonis, A.; Takahashi, R.; Nishihara, D.; Hikihara, T. The Three-Phase Power Router and Its Operation with Matrix Converter toward Smart-Grid Applications. Energies 2015, 8, 3034–3046. [Google Scholar] [CrossRef][Green Version]Hua, Y.; Xu, M.; Li, M.; Ma, C.; Zhao, C. Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles. Energies 2015, 8, 3556–3577. [Google Scholar] [CrossRef]Shi, L.-W.; Zhou, B. Comparative Study of a Fault-Tolerant Multiphase Wound-Field Doubly Salient Machine for Electrical Actuators. Energies 2015, 8, 3640–3660. [Google Scholar] [CrossRef]Olivella-Rosell, P.; Villafafila-Robles, R.; Sumper, A.; Bergas-Jané, J. Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks. Energies 2015, 8, 4160–4187. [Google Scholar] [CrossRef][Green Version]Locment, F.; Sechilariu, M. Modeling and Simulation of DC Microgrids for Electric Vehicle Charging Stations. Energies 2015, 8, 4335–4356. [Google Scholar] [CrossRef]Rogge, M.; Wollny, S.; Sauer, D.U. Fast Charging Battery Buses for the Electrification of Urban Public Transport—A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements. Energies 2015, 8, 4587–4606. [Google Scholar] [CrossRef][Green Version]Xue, S.; Gao, F.; Sun, W.; Li, B. Protection Principle for a DC Distribution System with a Resistive Superconductive Fault Current Limiter. Energies 2015, 8, 4839–4852. [Google Scholar] [CrossRef]Lee, J.; Sung, W.; Choi, J.-H. Metamodel for Efficient Estimation of Capacity-Fade Uncertainty in Li-Ion Batteries for Electric Vehicles. Energies 2015, 8, 5538–5554. [Google Scholar] [CrossRef]Cai, W.; Gu, C.; Hu, X. Analysis and Design of a Permanent Magnet Bi-Stable Electro-Magnetic Clutch Unit for In-Wheel Electric Vehicle Drives. Energies 2015, 8, 5598–5612. [Google Scholar] [CrossRef]Ma, F.; Zhao, C.; Zhang, F.; Zhao, Z.; Zhang, S. Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine. Energies 2015, 8, 5866–5884. [Google Scholar] [CrossRef]Zheng, Y.; Yang, J.; Hu, Z.; Zhou, M.; Li, G. Credibility Theory-Based Available Transfer Capability Assessment. Energies 2015, 8, 6059–6078. [Google Scholar] [CrossRef]Rothgang, S.; Rogge, M.; Becker, J.; Sauer, D.U. Battery Design for Successful Electrification in Public Transport. Energies 2015, 8, 6715–6737. [Google Scholar] [CrossRef]Ran, X.; Miao, S.; Wu, Y. Improved Adaptive Droop Control Design for Optimal Power Sharing in VSC-MTDC Integrating Wind Farms. Energies 2015, 8, 7100–7121. [Google Scholar] [CrossRef]Kou, B.; Jin, Y.; Zhang, L.; Zhang, H. Characteristic Analysis and Control of a Hybrid Excitation Linear Eddy Current Brake. Energies 2015, 8, 7441–7464. [Google Scholar] [CrossRef]Li, X.; Song, K.; Wei, G.; Lu, R.; Zhu, C. A Novel Grouping Method for Lithium Iron Phosphate Batteries Based on a Fractional Joint Kalman Filter and a New Modified K-Means Clustering Algorithm. Energies 2015, 8, 7703–7728. [Google Scholar] [CrossRef]Yuan, S.; Wu, H.; Ma, X.; Yin, C. Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration. Energies 2015, 8, 7729–7751. [Google Scholar] [CrossRef]Zhang, Y.; Zuo, Z.; Liu, J. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine. Energies 2015, 8, 8086–8109. [Google Scholar] [CrossRef]Liao, R.; Hu, E.; Yang, L.; Yuan, Y. Space Charge Behavior in Paper Insulation Induced by Copper Sulfide in High-Voltage Direct Current Power Transformers. Energies 2015, 8, 8110–8120. [Google Scholar] [CrossRef]Goutam, S.; Timmermans, J.-M.; Omar, N.; Bossche, P.V.; Van Mierlo, J. Comparative Study of Surface Temperature Behavior of Commercial Li-Ion Pouch Cells of Different Chemistries and Capacities by Infrared Thermography. Energies 2015, 8, 8175–8192. [Google Scholar] [CrossRef]De Cauwer, C.; Van Mierlo, J.; Coosemans, T. Energy Consumption Prediction for Electric Vehicles Based on Real-World Data. Energies 2015, 8, 8573–8593. [Google Scholar] [CrossRef] Figure 1. The broad spectrum of published submissions. Figure 1. The broad spectrum of published submissions. © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). Share and Cite MDPI and ACS Style Stewart, P.; Bingham, C. Electrical Power and Energy Systems for Transportation Applications. Energies 2016, 9, 545. https://doi.org/10.3390/en9070545 AMA Style Stewart P, Bingham C. Electrical Power and Energy Systems for Transportation Applications. Energies. 2016; 9(7):545. https://doi.org/10.3390/en9070545 Chicago/Turabian Style Stewart, Paul, and Chris Bingham. 2016. Electrical Power and Energy Systems for Transportation Applications Energies 9, no. 7: 545. https://doi.org/10.3390/en9070545 Find Other Styles Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here. Article Metrics No No Article Access Statistics For more information on the journal statistics, click here. Multiple requests from the same IP address are counted as one view." @default.
- W2471374208 created "2016-07-22" @default.
- W2471374208 creator A5045647966 @default.
- W2471374208 creator A5075204125 @default.
- W2471374208 date "2016-07-14" @default.
- W2471374208 modified "2023-10-16" @default.
- W2471374208 title "Electrical Power and Energy Systems for Transportation Applications" @default.
- W2471374208 cites W1481517692 @default.
- W2471374208 cites W1482531413 @default.
- W2471374208 cites W1498733551 @default.
- W2471374208 cites W1544960039 @default.
- W2471374208 cites W1555468874 @default.
- W2471374208 cites W1580598650 @default.
- W2471374208 cites W1602892149 @default.
- W2471374208 cites W1970912170 @default.
- W2471374208 cites W1998764699 @default.
- W2471374208 cites W2002707495 @default.
- W2471374208 cites W2020394016 @default.
- W2471374208 cites W2051360476 @default.
- W2471374208 cites W2055171644 @default.
- W2471374208 cites W2100666756 @default.
- W2471374208 cites W2122640316 @default.
- W2471374208 cites W2125445963 @default.
- W2471374208 cites W2125764446 @default.
- W2471374208 cites W2126620970 @default.
- W2471374208 cites W2128641456 @default.
- W2471374208 cites W2143388661 @default.
- W2471374208 cites W2148726453 @default.
- W2471374208 cites W2148827896 @default.
- W2471374208 cites W2153824767 @default.
- W2471374208 cites W2158598825 @default.
- W2471374208 cites W2166965497 @default.
- W2471374208 doi "https://doi.org/10.3390/en9070545" @default.
- W2471374208 hasPublicationYear "2016" @default.
- W2471374208 type Work @default.
- W2471374208 sameAs 2471374208 @default.
- W2471374208 citedByCount "1" @default.
- W2471374208 countsByYear W24713742082020 @default.
- W2471374208 crossrefType "journal-article" @default.
- W2471374208 hasAuthorship W2471374208A5045647966 @default.
- W2471374208 hasAuthorship W2471374208A5075204125 @default.
- W2471374208 hasBestOaLocation W24713742081 @default.
- W2471374208 hasConcept C119599485 @default.
- W2471374208 hasConcept C121332964 @default.
- W2471374208 hasConcept C127413603 @default.
- W2471374208 hasConcept C163258240 @default.
- W2471374208 hasConcept C171146098 @default.
- W2471374208 hasConcept C186370098 @default.
- W2471374208 hasConcept C201995342 @default.
- W2471374208 hasConcept C39432304 @default.
- W2471374208 hasConcept C62520636 @default.
- W2471374208 hasConcept C89227174 @default.
- W2471374208 hasConcept C98576551 @default.
- W2471374208 hasConceptScore W2471374208C119599485 @default.
- W2471374208 hasConceptScore W2471374208C121332964 @default.
- W2471374208 hasConceptScore W2471374208C127413603 @default.
- W2471374208 hasConceptScore W2471374208C163258240 @default.
- W2471374208 hasConceptScore W2471374208C171146098 @default.
- W2471374208 hasConceptScore W2471374208C186370098 @default.
- W2471374208 hasConceptScore W2471374208C201995342 @default.
- W2471374208 hasConceptScore W2471374208C39432304 @default.
- W2471374208 hasConceptScore W2471374208C62520636 @default.
- W2471374208 hasConceptScore W2471374208C89227174 @default.
- W2471374208 hasConceptScore W2471374208C98576551 @default.
- W2471374208 hasIssue "7" @default.
- W2471374208 hasLocation W24713742081 @default.
- W2471374208 hasLocation W24713742082 @default.
- W2471374208 hasLocation W24713742083 @default.
- W2471374208 hasLocation W24713742084 @default.
- W2471374208 hasOpenAccess W2471374208 @default.
- W2471374208 hasPrimaryLocation W24713742081 @default.
- W2471374208 hasRelatedWork W1496659986 @default.
- W2471374208 hasRelatedWork W1781456644 @default.
- W2471374208 hasRelatedWork W2358190750 @default.
- W2471374208 hasRelatedWork W2361368568 @default.
- W2471374208 hasRelatedWork W2363495409 @default.
- W2471374208 hasRelatedWork W2381398788 @default.
- W2471374208 hasRelatedWork W2391477214 @default.
- W2471374208 hasRelatedWork W2899084033 @default.
- W2471374208 hasRelatedWork W406927016 @default.
- W2471374208 hasRelatedWork W4220939574 @default.
- W2471374208 hasVolume "9" @default.
- W2471374208 isParatext "false" @default.
- W2471374208 isRetracted "false" @default.
- W2471374208 magId "2471374208" @default.
- W2471374208 workType "article" @default.