Matches in SemOpenAlex for { <https://semopenalex.org/work/W2471764118> ?p ?o ?g. }
- W2471764118 endingPage "3732" @default.
- W2471764118 startingPage "3719" @default.
- W2471764118 abstract "In this paper, we are devoted to solving the problem of crossing surveillance and mobile phone visual location recognition, especially for the case that the query and reference images are captured by mobile phone and surveillance camera, respectively. Besides, we also study the influence of the environmental condition variations on this problem. To explore that problem, we first build a cross-device location recognition dataset, which includes images of 22 locations taken by mobile phones and surveillance cameras under different time and weather conditions. Then based on careful analysis of the problems existing in the data, we specifically design a method which unifies an unsupervised subspace alignment method and the semi-supervised Laplacian support vector machine. Experiments are performed on our dataset. Compared with several related methods, our method shows to be more efficient on the problem of crossing surveillance and mobile phone visual location recognition. Furthermore, the influence of several factors such as feature, time, and weather is studied." @default.
- W2471764118 created "2016-07-22" @default.
- W2471764118 creator A5028693655 @default.
- W2471764118 creator A5060714978 @default.
- W2471764118 creator A5078748099 @default.
- W2471764118 creator A5080880099 @default.
- W2471764118 creator A5083525525 @default.
- W2471764118 date "2017-11-01" @default.
- W2471764118 modified "2023-10-17" @default.
- W2471764118 title "A Semi-Supervised Method for Surveillance-Based Visual Location Recognition" @default.
- W2471764118 cites W1000498390 @default.
- W2471764118 cites W1080243903 @default.
- W2471764118 cites W1505090736 @default.
- W2471764118 cites W1566135517 @default.
- W2471764118 cites W1822439997 @default.
- W2471764118 cites W1964318763 @default.
- W2471764118 cites W1969370863 @default.
- W2471764118 cites W1971221757 @default.
- W2471764118 cites W1977341822 @default.
- W2471764118 cites W1987488988 @default.
- W2471764118 cites W1988281247 @default.
- W2471764118 cites W1992454114 @default.
- W2471764118 cites W1995288918 @default.
- W2471764118 cites W2010812659 @default.
- W2471764118 cites W2013270301 @default.
- W2471764118 cites W2023355907 @default.
- W2471764118 cites W2029068223 @default.
- W2471764118 cites W2037444913 @default.
- W2471764118 cites W2042184006 @default.
- W2471764118 cites W2042453128 @default.
- W2471764118 cites W2055132753 @default.
- W2471764118 cites W2068143350 @default.
- W2471764118 cites W2079393151 @default.
- W2471764118 cites W2081418428 @default.
- W2471764118 cites W2081621443 @default.
- W2471764118 cites W2087463677 @default.
- W2471764118 cites W2095358301 @default.
- W2471764118 cites W2097308346 @default.
- W2471764118 cites W2103163130 @default.
- W2471764118 cites W2104068492 @default.
- W2471764118 cites W2121765205 @default.
- W2471764118 cites W2128326367 @default.
- W2471764118 cites W2131846894 @default.
- W2471764118 cites W2134446283 @default.
- W2471764118 cites W2144990732 @default.
- W2471764118 cites W2148029428 @default.
- W2471764118 cites W2155823702 @default.
- W2471764118 cites W2329970237 @default.
- W2471764118 cites W2413449759 @default.
- W2471764118 cites W588994728 @default.
- W2471764118 doi "https://doi.org/10.1109/tcyb.2016.2578639" @default.
- W2471764118 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27352403" @default.
- W2471764118 hasPublicationYear "2017" @default.
- W2471764118 type Work @default.
- W2471764118 sameAs 2471764118 @default.
- W2471764118 citedByCount "13" @default.
- W2471764118 countsByYear W24717641182018 @default.
- W2471764118 countsByYear W24717641182019 @default.
- W2471764118 countsByYear W24717641182020 @default.
- W2471764118 countsByYear W24717641182021 @default.
- W2471764118 countsByYear W24717641182022 @default.
- W2471764118 countsByYear W24717641182023 @default.
- W2471764118 crossrefType "journal-article" @default.
- W2471764118 hasAuthorship W2471764118A5028693655 @default.
- W2471764118 hasAuthorship W2471764118A5060714978 @default.
- W2471764118 hasAuthorship W2471764118A5078748099 @default.
- W2471764118 hasAuthorship W2471764118A5080880099 @default.
- W2471764118 hasAuthorship W2471764118A5083525525 @default.
- W2471764118 hasConcept C119857082 @default.
- W2471764118 hasConcept C124101348 @default.
- W2471764118 hasConcept C138885662 @default.
- W2471764118 hasConcept C147942929 @default.
- W2471764118 hasConcept C153180895 @default.
- W2471764118 hasConcept C154945302 @default.
- W2471764118 hasConcept C2776401178 @default.
- W2471764118 hasConcept C2777421447 @default.
- W2471764118 hasConcept C31972630 @default.
- W2471764118 hasConcept C32834561 @default.
- W2471764118 hasConcept C41008148 @default.
- W2471764118 hasConcept C41895202 @default.
- W2471764118 hasConcept C76155785 @default.
- W2471764118 hasConceptScore W2471764118C119857082 @default.
- W2471764118 hasConceptScore W2471764118C124101348 @default.
- W2471764118 hasConceptScore W2471764118C138885662 @default.
- W2471764118 hasConceptScore W2471764118C147942929 @default.
- W2471764118 hasConceptScore W2471764118C153180895 @default.
- W2471764118 hasConceptScore W2471764118C154945302 @default.
- W2471764118 hasConceptScore W2471764118C2776401178 @default.
- W2471764118 hasConceptScore W2471764118C2777421447 @default.
- W2471764118 hasConceptScore W2471764118C31972630 @default.
- W2471764118 hasConceptScore W2471764118C32834561 @default.
- W2471764118 hasConceptScore W2471764118C41008148 @default.
- W2471764118 hasConceptScore W2471764118C41895202 @default.
- W2471764118 hasConceptScore W2471764118C76155785 @default.
- W2471764118 hasFunder F4320321001 @default.
- W2471764118 hasFunder F4320321133 @default.
- W2471764118 hasFunder F4320335777 @default.
- W2471764118 hasIssue "11" @default.