Matches in SemOpenAlex for { <https://semopenalex.org/work/W2471898984> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2471898984 endingPage "418" @default.
- W2471898984 startingPage "408" @default.
- W2471898984 abstract "Surface reconstruction from point clouds generated by laser scanning technology has become a fundamental task in many fields of geosciences, such as robotics, computer vision, digital photogrammetry, computational geometry, digital building modelling, forest planning and operational activities. Point clouds produced by laser scanning, however, are limited due to the occurrence of occlusions, multiple reflectance and noise, and off-surface points (outliers), thus necessitating the need for robust fitting techniques. In this contribution, a fast, non-iterative and data invariant algebraic algorithm with constant O(1) complexity that fits planes to point clouds in the total least squares sense using Gaussian-type error distribution is proposed. The maximum likelihood estimator method is used, resulting in a multivariate polynomial system that is solved in an algebraic way. It is shown that for plane fitting when datasets are affected heavily by outliers, the proposed algebraic method can be embedded into the framework of robust methods like the Danish or the RANdom SAmple Consensus methods and computed in parallel to provide rigorous algebraic fitting with significantly reduced running times. Compared to the embedded traditional singular value decomposition and principal component analysis approaches, the performance of the proposed algebraic algorithm demonstrated its efficiency on both synthetic data and real laser-scanned measurements. The evaluation of a symbolic algebraic formula is practically independent of the values of its coefficients; however, the computation of the coefficients depends on the complexity of the data. Since the main advantage of the symbolic solution is its non-requirement of numerical iteration, the data complexity will have weak influence on the speed-up. The novelty of the proposed method is the use of algebraic technique in a robust plane fitting algorithm that could be applied to remote sensing data analysis/delineation/classification. In general, the method could be applied to most plane fitting problems in the geoscience field." @default.
- W2471898984 created "2016-07-22" @default.
- W2471898984 creator A5003350138 @default.
- W2471898984 creator A5004983328 @default.
- W2471898984 creator A5011353941 @default.
- W2471898984 creator A5040568269 @default.
- W2471898984 creator A5042360231 @default.
- W2471898984 creator A5073630026 @default.
- W2471898984 creator A5082084521 @default.
- W2471898984 date "2016-06-20" @default.
- W2471898984 modified "2023-10-14" @default.
- W2471898984 title "Algebraic method to speed up robust algorithms: example of laser-scanned point clouds" @default.
- W2471898984 cites W1555679130 @default.
- W2471898984 cites W1965338002 @default.
- W2471898984 cites W1966979296 @default.
- W2471898984 cites W1976377934 @default.
- W2471898984 cites W2000018820 @default.
- W2471898984 cites W2016853645 @default.
- W2471898984 cites W2017477922 @default.
- W2471898984 cites W2057749491 @default.
- W2471898984 cites W2074370150 @default.
- W2471898984 cites W2103842058 @default.
- W2471898984 cites W2111073598 @default.
- W2471898984 cites W2167387804 @default.
- W2471898984 cites W2315021181 @default.
- W2471898984 cites W4234184029 @default.
- W2471898984 cites W4239873714 @default.
- W2471898984 cites W4243563432 @default.
- W2471898984 cites W4375184042 @default.
- W2471898984 doi "https://doi.org/10.1080/00396265.2016.1183939" @default.
- W2471898984 hasPublicationYear "2016" @default.
- W2471898984 type Work @default.
- W2471898984 sameAs 2471898984 @default.
- W2471898984 citedByCount "3" @default.
- W2471898984 countsByYear W24718989842016 @default.
- W2471898984 countsByYear W24718989842023 @default.
- W2471898984 crossrefType "journal-article" @default.
- W2471898984 hasAuthorship W2471898984A5003350138 @default.
- W2471898984 hasAuthorship W2471898984A5004983328 @default.
- W2471898984 hasAuthorship W2471898984A5011353941 @default.
- W2471898984 hasAuthorship W2471898984A5040568269 @default.
- W2471898984 hasAuthorship W2471898984A5042360231 @default.
- W2471898984 hasAuthorship W2471898984A5073630026 @default.
- W2471898984 hasAuthorship W2471898984A5082084521 @default.
- W2471898984 hasConcept C11413529 @default.
- W2471898984 hasConcept C117455697 @default.
- W2471898984 hasConcept C120665830 @default.
- W2471898984 hasConcept C121332964 @default.
- W2471898984 hasConcept C131979681 @default.
- W2471898984 hasConcept C134306372 @default.
- W2471898984 hasConcept C141349535 @default.
- W2471898984 hasConcept C154945302 @default.
- W2471898984 hasConcept C186219872 @default.
- W2471898984 hasConcept C201482947 @default.
- W2471898984 hasConcept C22789450 @default.
- W2471898984 hasConcept C33923547 @default.
- W2471898984 hasConcept C41008148 @default.
- W2471898984 hasConcept C51544822 @default.
- W2471898984 hasConcept C520434653 @default.
- W2471898984 hasConcept C78045399 @default.
- W2471898984 hasConcept C79337645 @default.
- W2471898984 hasConceptScore W2471898984C11413529 @default.
- W2471898984 hasConceptScore W2471898984C117455697 @default.
- W2471898984 hasConceptScore W2471898984C120665830 @default.
- W2471898984 hasConceptScore W2471898984C121332964 @default.
- W2471898984 hasConceptScore W2471898984C131979681 @default.
- W2471898984 hasConceptScore W2471898984C134306372 @default.
- W2471898984 hasConceptScore W2471898984C141349535 @default.
- W2471898984 hasConceptScore W2471898984C154945302 @default.
- W2471898984 hasConceptScore W2471898984C186219872 @default.
- W2471898984 hasConceptScore W2471898984C201482947 @default.
- W2471898984 hasConceptScore W2471898984C22789450 @default.
- W2471898984 hasConceptScore W2471898984C33923547 @default.
- W2471898984 hasConceptScore W2471898984C41008148 @default.
- W2471898984 hasConceptScore W2471898984C51544822 @default.
- W2471898984 hasConceptScore W2471898984C520434653 @default.
- W2471898984 hasConceptScore W2471898984C78045399 @default.
- W2471898984 hasConceptScore W2471898984C79337645 @default.
- W2471898984 hasIssue "357" @default.
- W2471898984 hasLocation W24718989841 @default.
- W2471898984 hasOpenAccess W2471898984 @default.
- W2471898984 hasPrimaryLocation W24718989841 @default.
- W2471898984 hasRelatedWork W2001220299 @default.
- W2471898984 hasRelatedWork W2005998065 @default.
- W2471898984 hasRelatedWork W2088131065 @default.
- W2471898984 hasRelatedWork W2091615206 @default.
- W2471898984 hasRelatedWork W2286704396 @default.
- W2471898984 hasRelatedWork W2360363937 @default.
- W2471898984 hasRelatedWork W2366440988 @default.
- W2471898984 hasRelatedWork W2969134726 @default.
- W2471898984 hasRelatedWork W3196715007 @default.
- W2471898984 hasRelatedWork W4323518558 @default.
- W2471898984 hasVolume "49" @default.
- W2471898984 isParatext "false" @default.
- W2471898984 isRetracted "false" @default.
- W2471898984 magId "2471898984" @default.
- W2471898984 workType "article" @default.