Matches in SemOpenAlex for { <https://semopenalex.org/work/W2471941488> ?p ?o ?g. }
- W2471941488 endingPage "280" @default.
- W2471941488 startingPage "257" @default.
- W2471941488 abstract "In this study, an attempt has been made to develop a new theoretical model that can be used to predict the fracture spacing/density that develops in a single competent layer and in multilayers as a result of folding. The work is based on earlier analyses concerned with the fracturing of unfolded strata subjected only to layer-normal compression. Such a stress state exists in the upper crust in any tectonically relaxed region where the principal cause of stress is the overburden. Unlike previous studies on theoretical fracture-spacing modelling that are mainly designed for a layer-parallel horizontal-extension system, this study has introduced a new theoretical model for the predicting and modelling of fracture spacing/density in ‘folded’ reservoirs, which contain > 85% of the world9s oil and gas traps. This theoretical model is an integrated model: that is, it takes into account both rock mechanical and geometrical properties of the reservoir. The big advantage of the theoretical model developed in this study is that it provides well- and reservoir-scale estimates of the fracture spacing, for both axial and cross-axial fractures (i.e. the dominant fracture sets in folded reservoirs), which can be used for predicting fracture density (the reciprocal of fracture spacing), fracture aperture, the Rock Fracture Potential Index (RFPI), fracture porosity, fracture permeability, the shape factor (sigma) and for optimizing the drilling (i.e. the Optimum Drilling Direction (ODD) and the Optimum Drilling Angle (ODA) to maximize the fracture intersection in the wells) in three dimensions in folded, single layer and multilayer fractured reservoirs. In addition, new approaches are described for quantifying the mechanical bed thickness (MBT) or mechanical unit thickness (MUT), estimating the fracture aperture ( w ), estimating the distance from the neutral surface ( a ) and determining the RFPI data that are essential for implementing the theoretical model presented in this paper related to subsurface, folded, fractured reservoirs. The expressions derived for fracture spacing/density, for both axial and cross-axial fracture sets, involve data that are always available for every field development (i.e. seismic, well and core data). An understanding of the distribution of the fracture spacing/density, fracture aperture and the RFPI at an early stage in the development of a fractured reservoir is crucial in selecting a proper field development strategy, managing well placement and for monitoring production from the reservoir. In summary, based on several case studies, one of which is presented in this paper, it can be confirmed that the theoretical model, expressed in equations given in this paper, predicts what has been observed in the folded clastic reservoirs of the study area. It is concluded that curvature alone cannot reveal the location of natural fractures in a reservoir and that the mechanical properties of the reservoir rock play a significant role in the development of a natural fracture system. Rock can accommodate strain by fracturing (i.e. if its RFPI is high) or (if its RFPI is low) use its internal strain storage capability (associated with its mechanical properties: e.g. porosity collapsing, grain sliding and the formation of intra-grain hairline fractures) to consume the stress without the need to accommodate strain by fracturing." @default.
- W2471941488 created "2016-07-22" @default.
- W2471941488 creator A5017905566 @default.
- W2471941488 creator A5029347093 @default.
- W2471941488 creator A5030355645 @default.
- W2471941488 date "2016-06-28" @default.
- W2471941488 modified "2023-09-27" @default.
- W2471941488 title "New theoretical model for predicting and modelling fractures in folded fractured reservoirs" @default.
- W2471941488 cites W11384943 @default.
- W2471941488 cites W1584134355 @default.
- W2471941488 cites W1967403994 @default.
- W2471941488 cites W1971471082 @default.
- W2471941488 cites W1971486541 @default.
- W2471941488 cites W1973849328 @default.
- W2471941488 cites W1977934896 @default.
- W2471941488 cites W1981447572 @default.
- W2471941488 cites W1987030511 @default.
- W2471941488 cites W1989077332 @default.
- W2471941488 cites W1990237774 @default.
- W2471941488 cites W1996153441 @default.
- W2471941488 cites W1997535748 @default.
- W2471941488 cites W1998513160 @default.
- W2471941488 cites W2002178471 @default.
- W2471941488 cites W2002220756 @default.
- W2471941488 cites W2004574457 @default.
- W2471941488 cites W2007748096 @default.
- W2471941488 cites W2021558362 @default.
- W2471941488 cites W2029135352 @default.
- W2471941488 cites W2030601952 @default.
- W2471941488 cites W2034892466 @default.
- W2471941488 cites W2037753167 @default.
- W2471941488 cites W2041859982 @default.
- W2471941488 cites W2048140037 @default.
- W2471941488 cites W2051671955 @default.
- W2471941488 cites W2056452640 @default.
- W2471941488 cites W2057003563 @default.
- W2471941488 cites W2059400040 @default.
- W2471941488 cites W2060908121 @default.
- W2471941488 cites W2064085256 @default.
- W2471941488 cites W2074837798 @default.
- W2471941488 cites W2078000550 @default.
- W2471941488 cites W2080306011 @default.
- W2471941488 cites W2081261825 @default.
- W2471941488 cites W2089801426 @default.
- W2471941488 cites W2090276952 @default.
- W2471941488 cites W2095422904 @default.
- W2471941488 cites W2100970426 @default.
- W2471941488 cites W2112118040 @default.
- W2471941488 cites W2116003371 @default.
- W2471941488 cites W2116369243 @default.
- W2471941488 cites W2138128107 @default.
- W2471941488 cites W2145701030 @default.
- W2471941488 cites W2146934490 @default.
- W2471941488 cites W2147295674 @default.
- W2471941488 cites W2149808122 @default.
- W2471941488 cites W2160683791 @default.
- W2471941488 cites W2463546674 @default.
- W2471941488 doi "https://doi.org/10.1144/petgeo2013-055" @default.
- W2471941488 hasPublicationYear "2016" @default.
- W2471941488 type Work @default.
- W2471941488 sameAs 2471941488 @default.
- W2471941488 citedByCount "14" @default.
- W2471941488 countsByYear W24719414882018 @default.
- W2471941488 countsByYear W24719414882019 @default.
- W2471941488 countsByYear W24719414882020 @default.
- W2471941488 countsByYear W24719414882021 @default.
- W2471941488 countsByYear W24719414882022 @default.
- W2471941488 countsByYear W24719414882023 @default.
- W2471941488 crossrefType "journal-article" @default.
- W2471941488 hasAuthorship W2471941488A5017905566 @default.
- W2471941488 hasAuthorship W2471941488A5029347093 @default.
- W2471941488 hasAuthorship W2471941488A5030355645 @default.
- W2471941488 hasConcept C127313418 @default.
- W2471941488 hasConcept C149137386 @default.
- W2471941488 hasConcept C159719176 @default.
- W2471941488 hasConcept C161028810 @default.
- W2471941488 hasConcept C165205528 @default.
- W2471941488 hasConcept C170152797 @default.
- W2471941488 hasConcept C187320778 @default.
- W2471941488 hasConcept C2776867696 @default.
- W2471941488 hasConcept C2993313656 @default.
- W2471941488 hasConcept C33556824 @default.
- W2471941488 hasConcept C34527478 @default.
- W2471941488 hasConcept C5900021 @default.
- W2471941488 hasConcept C6363049 @default.
- W2471941488 hasConcept C77928131 @default.
- W2471941488 hasConcept C8058405 @default.
- W2471941488 hasConcept C85909142 @default.
- W2471941488 hasConceptScore W2471941488C127313418 @default.
- W2471941488 hasConceptScore W2471941488C149137386 @default.
- W2471941488 hasConceptScore W2471941488C159719176 @default.
- W2471941488 hasConceptScore W2471941488C161028810 @default.
- W2471941488 hasConceptScore W2471941488C165205528 @default.
- W2471941488 hasConceptScore W2471941488C170152797 @default.
- W2471941488 hasConceptScore W2471941488C187320778 @default.
- W2471941488 hasConceptScore W2471941488C2776867696 @default.
- W2471941488 hasConceptScore W2471941488C2993313656 @default.
- W2471941488 hasConceptScore W2471941488C33556824 @default.