Matches in SemOpenAlex for { <https://semopenalex.org/work/W2471992026> ?p ?o ?g. }
- W2471992026 endingPage "452" @default.
- W2471992026 startingPage "448" @default.
- W2471992026 abstract "Stabilization of an active and inactive conformation of the β2-adrenergic receptor by allosteric nanobodies reveals differential ligand-dependent regulation of receptor states to control G-protein-coupled receptor activation. In this manuscript, the authors studied how a positive allosteric nanobody (Nb80) and a newly discovered negative allosteric nanobody (Nb60) alter the structure of the β2-adrenergic receptor (β2AR). Their data support a three-state model for receptor activation in this important G-protein-coupled receptor, rather than a simple inactive–active two-state model. They also find that full agonists primarily stabilize the active Nb80-stabilized receptor state (while having negligible effects on the inactive Nb60-bound state), but partial agonists appear to regulate multiple receptor states to control receptor activation. G-protein-coupled receptors (GPCRs) modulate many physiological processes by transducing a variety of extracellular cues into intracellular responses. Ligand binding to an extracellular orthosteric pocket propagates conformational change to the receptor cytosolic region to promote binding and activation of downstream signalling effectors such as G proteins and β-arrestins. It is well known that different agonists can share the same binding pocket but evoke unique receptor conformations leading to a wide range of downstream responses (‘efficacy’)1. Furthermore, increasing biophysical evidence, primarily using the β2-adrenergic receptor (β2AR) as a model system, supports the existence of multiple active and inactive conformational states2,3,4,5. However, how agonists with varying efficacy modulate these receptor states to initiate cellular responses is not well understood. Here we report stabilization of two distinct β2AR conformations using single domain camelid antibodies (nanobodies)—a previously described positive allosteric nanobody (Nb80)6,7 and a newly identified negative allosteric nanobody (Nb60). We show that Nb60 stabilizes a previously unappreciated low-affinity receptor state which corresponds to one of two inactive receptor conformations as delineated by X-ray crystallography and NMR spectroscopy. We find that the agonist isoprenaline has a 15,000-fold higher affinity for β2AR in the presence of Nb80 compared to the affinity of isoprenaline for β2AR in the presence of Nb60, highlighting the full allosteric range of a GPCR. Assessing the binding of 17 ligands of varying efficacy to the β2AR in the absence and presence of Nb60 or Nb80 reveals large ligand-specific effects that can only be explained using an allosteric model which assumes equilibrium amongst at least three receptor states. Agonists generally exert efficacy by stabilizing the active Nb80-stabilized receptor state (R80). In contrast, for a number of partial agonists, both stabilization of R80 and destabilization of the inactive, Nb60-bound state (R60) contribute to their ability to modulate receptor activation. These data demonstrate that ligands can initiate a wide range of cellular responses by differentially stabilizing multiple receptor states." @default.
- W2471992026 created "2016-07-22" @default.
- W2471992026 creator A5001394494 @default.
- W2471992026 creator A5001626009 @default.
- W2471992026 creator A5002431875 @default.
- W2471992026 creator A5032543179 @default.
- W2471992026 creator A5047031136 @default.
- W2471992026 creator A5047852347 @default.
- W2471992026 creator A5052949023 @default.
- W2471992026 creator A5057664407 @default.
- W2471992026 creator A5062307345 @default.
- W2471992026 creator A5063106344 @default.
- W2471992026 creator A5066835130 @default.
- W2471992026 creator A5067903811 @default.
- W2471992026 creator A5072030969 @default.
- W2471992026 creator A5073548504 @default.
- W2471992026 creator A5079682203 @default.
- W2471992026 creator A5080672788 @default.
- W2471992026 creator A5081800434 @default.
- W2471992026 creator A5083258880 @default.
- W2471992026 date "2016-07-01" @default.
- W2471992026 modified "2023-10-17" @default.
- W2471992026 title "Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation" @default.
- W2471992026 cites W1489775551 @default.
- W2471992026 cites W1539796472 @default.
- W2471992026 cites W1833104430 @default.
- W2471992026 cites W1978369665 @default.
- W2471992026 cites W1979948766 @default.
- W2471992026 cites W1983208005 @default.
- W2471992026 cites W1991163722 @default.
- W2471992026 cites W1991887913 @default.
- W2471992026 cites W1995896691 @default.
- W2471992026 cites W2001302355 @default.
- W2471992026 cites W2003620627 @default.
- W2471992026 cites W2019539638 @default.
- W2471992026 cites W2020601776 @default.
- W2471992026 cites W2034941411 @default.
- W2471992026 cites W2041211150 @default.
- W2471992026 cites W2046849514 @default.
- W2471992026 cites W2047291465 @default.
- W2471992026 cites W2053549636 @default.
- W2471992026 cites W2076283593 @default.
- W2471992026 cites W2089969245 @default.
- W2471992026 cites W2094777850 @default.
- W2471992026 cites W2102459914 @default.
- W2471992026 cites W2111677023 @default.
- W2471992026 cites W2113074382 @default.
- W2471992026 cites W2119199305 @default.
- W2471992026 cites W2125484726 @default.
- W2471992026 cites W2139129258 @default.
- W2471992026 cites W2144081223 @default.
- W2471992026 cites W2148598721 @default.
- W2471992026 cites W2154714625 @default.
- W2471992026 cites W2162109316 @default.
- W2471992026 cites W2163341755 @default.
- W2471992026 cites W2167857702 @default.
- W2471992026 cites W2180229411 @default.
- W2471992026 doi "https://doi.org/10.1038/nature18636" @default.
- W2471992026 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4961583" @default.
- W2471992026 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27409812" @default.
- W2471992026 hasPublicationYear "2016" @default.
- W2471992026 type Work @default.
- W2471992026 sameAs 2471992026 @default.
- W2471992026 citedByCount "270" @default.
- W2471992026 countsByYear W24719920262016 @default.
- W2471992026 countsByYear W24719920262017 @default.
- W2471992026 countsByYear W24719920262018 @default.
- W2471992026 countsByYear W24719920262019 @default.
- W2471992026 countsByYear W24719920262020 @default.
- W2471992026 countsByYear W24719920262021 @default.
- W2471992026 countsByYear W24719920262022 @default.
- W2471992026 countsByYear W24719920262023 @default.
- W2471992026 crossrefType "journal-article" @default.
- W2471992026 hasAuthorship W2471992026A5001394494 @default.
- W2471992026 hasAuthorship W2471992026A5001626009 @default.
- W2471992026 hasAuthorship W2471992026A5002431875 @default.
- W2471992026 hasAuthorship W2471992026A5032543179 @default.
- W2471992026 hasAuthorship W2471992026A5047031136 @default.
- W2471992026 hasAuthorship W2471992026A5047852347 @default.
- W2471992026 hasAuthorship W2471992026A5052949023 @default.
- W2471992026 hasAuthorship W2471992026A5057664407 @default.
- W2471992026 hasAuthorship W2471992026A5062307345 @default.
- W2471992026 hasAuthorship W2471992026A5063106344 @default.
- W2471992026 hasAuthorship W2471992026A5066835130 @default.
- W2471992026 hasAuthorship W2471992026A5067903811 @default.
- W2471992026 hasAuthorship W2471992026A5072030969 @default.
- W2471992026 hasAuthorship W2471992026A5073548504 @default.
- W2471992026 hasAuthorship W2471992026A5079682203 @default.
- W2471992026 hasAuthorship W2471992026A5080672788 @default.
- W2471992026 hasAuthorship W2471992026A5081800434 @default.
- W2471992026 hasAuthorship W2471992026A5083258880 @default.
- W2471992026 hasBestOaLocation W24719920262 @default.
- W2471992026 hasConcept C116569031 @default.
- W2471992026 hasConcept C12554922 @default.
- W2471992026 hasConcept C135285700 @default.
- W2471992026 hasConcept C166342909 @default.
- W2471992026 hasConcept C170493617 @default.
- W2471992026 hasConcept C185592680 @default.