Matches in SemOpenAlex for { <https://semopenalex.org/work/W2472012120> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2472012120 endingPage "604" @default.
- W2472012120 startingPage "595" @default.
- W2472012120 abstract "Automated credit approval helps credit-granting institutions in reducing time and efforts in analyzing credit approval requests and to distinguish good customers from bad ones. Enhancing the automated process of credit approval by integrating it with a good business intelligence (BI) system puts financial institutions and banks in a better position compared to their competitors. In this paper, a novel hybrid approach based on neural network model called Cycle Reservoir with regular Jumps (CRJ) and Support Vector Machines (SVM) is proposed for classifying credit approval requests. In this approach, the readout learning of CRJ will be trained using SVM. Experiments results confirm that in comparison with other data mining techniques, CRJ with SVM readout gives superior classification results." @default.
- W2472012120 created "2016-07-22" @default.
- W2472012120 creator A5048560390 @default.
- W2472012120 creator A5064993007 @default.
- W2472012120 date "2016-01-01" @default.
- W2472012120 modified "2023-10-18" @default.
- W2472012120 title "Credit Risk Evaluation Using Cycle Reservoir Neural Networks with Support Vector Machines Readout" @default.
- W2472012120 cites W1482413000 @default.
- W2472012120 cites W1563088657 @default.
- W2472012120 cites W1966528570 @default.
- W2472012120 cites W1986033385 @default.
- W2472012120 cites W1990113270 @default.
- W2472012120 cites W1991383297 @default.
- W2472012120 cites W1994345439 @default.
- W2472012120 cites W1996860168 @default.
- W2472012120 cites W1999946446 @default.
- W2472012120 cites W2005315509 @default.
- W2472012120 cites W2029869759 @default.
- W2472012120 cites W2038313399 @default.
- W2472012120 cites W2063960053 @default.
- W2472012120 cites W2067562626 @default.
- W2472012120 cites W2079196938 @default.
- W2472012120 cites W2125790506 @default.
- W2472012120 cites W2133772980 @default.
- W2472012120 cites W2149298154 @default.
- W2472012120 cites W2155379643 @default.
- W2472012120 cites W2156909104 @default.
- W2472012120 cites W2159682675 @default.
- W2472012120 cites W2171865010 @default.
- W2472012120 cites W3121588992 @default.
- W2472012120 doi "https://doi.org/10.1007/978-3-662-49381-6_57" @default.
- W2472012120 hasPublicationYear "2016" @default.
- W2472012120 type Work @default.
- W2472012120 sameAs 2472012120 @default.
- W2472012120 citedByCount "6" @default.
- W2472012120 countsByYear W24720121202017 @default.
- W2472012120 countsByYear W24720121202018 @default.
- W2472012120 countsByYear W24720121202019 @default.
- W2472012120 countsByYear W24720121202020 @default.
- W2472012120 countsByYear W24720121202021 @default.
- W2472012120 countsByYear W24720121202022 @default.
- W2472012120 crossrefType "book-chapter" @default.
- W2472012120 hasAuthorship W2472012120A5048560390 @default.
- W2472012120 hasAuthorship W2472012120A5064993007 @default.
- W2472012120 hasConcept C10138342 @default.
- W2472012120 hasConcept C111919701 @default.
- W2472012120 hasConcept C119857082 @default.
- W2472012120 hasConcept C12267149 @default.
- W2472012120 hasConcept C124101348 @default.
- W2472012120 hasConcept C127576917 @default.
- W2472012120 hasConcept C144133560 @default.
- W2472012120 hasConcept C154945302 @default.
- W2472012120 hasConcept C162853370 @default.
- W2472012120 hasConcept C198082294 @default.
- W2472012120 hasConcept C41008148 @default.
- W2472012120 hasConcept C50644808 @default.
- W2472012120 hasConcept C98045186 @default.
- W2472012120 hasConceptScore W2472012120C10138342 @default.
- W2472012120 hasConceptScore W2472012120C111919701 @default.
- W2472012120 hasConceptScore W2472012120C119857082 @default.
- W2472012120 hasConceptScore W2472012120C12267149 @default.
- W2472012120 hasConceptScore W2472012120C124101348 @default.
- W2472012120 hasConceptScore W2472012120C127576917 @default.
- W2472012120 hasConceptScore W2472012120C144133560 @default.
- W2472012120 hasConceptScore W2472012120C154945302 @default.
- W2472012120 hasConceptScore W2472012120C162853370 @default.
- W2472012120 hasConceptScore W2472012120C198082294 @default.
- W2472012120 hasConceptScore W2472012120C41008148 @default.
- W2472012120 hasConceptScore W2472012120C50644808 @default.
- W2472012120 hasConceptScore W2472012120C98045186 @default.
- W2472012120 hasLocation W24720121201 @default.
- W2472012120 hasOpenAccess W2472012120 @default.
- W2472012120 hasPrimaryLocation W24720121201 @default.
- W2472012120 hasRelatedWork W1996541855 @default.
- W2472012120 hasRelatedWork W2101819884 @default.
- W2472012120 hasRelatedWork W2937631562 @default.
- W2472012120 hasRelatedWork W2979979539 @default.
- W2472012120 hasRelatedWork W3136979370 @default.
- W2472012120 hasRelatedWork W3194539120 @default.
- W2472012120 hasRelatedWork W3195168932 @default.
- W2472012120 hasRelatedWork W4205958290 @default.
- W2472012120 hasRelatedWork W4361795583 @default.
- W2472012120 hasRelatedWork W4362499384 @default.
- W2472012120 isParatext "false" @default.
- W2472012120 isRetracted "false" @default.
- W2472012120 magId "2472012120" @default.
- W2472012120 workType "book-chapter" @default.