Matches in SemOpenAlex for { <https://semopenalex.org/work/W2472068560> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2472068560 abstract "Laser scanner-captured 3-D point cloud data analysis is becoming more commonly used for remote sensing and plant science applications. Because of nonrigidity and complexity, reconstructing a 3-D model of a plant is extremely challenging. Existing algorithms often fail to find correct correspondences for plantlike thin structures. We address the problem of finding 3-D junction points in plant point cloud data as a first step of this correspondence matching process. Temporarily, we transform the 3-D problem into 2-D by performing appropriate coordinate transformations to the neighborhood of each 3-D point. Our proposed method has two steps. First, a statistical dip test of multimodality is performed to detect the nonlinearity of the local 2D structure. Then, each branch is approximated by sequential random-sample-consensus line fitting and a Euclidean clustering technique. The straight line parameters of each branch are extracted using total-least-squares estimation. Finally, the straight line equations are solved to determine if they intersect in the local neighborhood. Such junction points are good candidates for subsequent correspondence algorithms. Using these detected junction points, we formulate a correspondence algorithm as a subgraph matching problem and show that, without using traditional descriptor similarity-based matching, good correspondences can be obtained by simply considering geodesic distances among graph nodes. Experiments on synthetic and real ( Arabidopsis plant) data show that the proposed method outperforms the state of the art." @default.
- W2472068560 created "2016-07-22" @default.
- W2472068560 creator A5027556687 @default.
- W2472068560 creator A5058391040 @default.
- W2472068560 creator A5074150876 @default.
- W2472068560 date "2016-01-01" @default.
- W2472068560 modified "2023-09-27" @default.
- W2472068560 title "Junction-Based Correspondence Estimation of Plant Point Cloud Data Using Subgraph Matching" @default.
- W2472068560 cites W1996398108 @default.
- W2472068560 cites W1997817740 @default.
- W2472068560 cites W2001169620 @default.
- W2472068560 cites W2004996467 @default.
- W2472068560 cites W2030160596 @default.
- W2472068560 cites W2094539604 @default.
- W2472068560 cites W2099606917 @default.
- W2472068560 cites W2100740942 @default.
- W2472068560 cites W2104650469 @default.
- W2472068560 cites W2121225280 @default.
- W2472068560 cites W2129199198 @default.
- W2472068560 cites W2130787037 @default.
- W2472068560 cites W2132761823 @default.
- W2472068560 cites W2134236847 @default.
- W2472068560 cites W2136020167 @default.
- W2472068560 cites W2150190641 @default.
- W2472068560 cites W2151103935 @default.
- W2472068560 cites W2157084238 @default.
- W2472068560 cites W2158256890 @default.
- W2472068560 cites W2335529807 @default.
- W2472068560 doi "https://doi.org/10.1109/lgrs.2016.2571121" @default.
- W2472068560 hasPublicationYear "2016" @default.
- W2472068560 type Work @default.
- W2472068560 sameAs 2472068560 @default.
- W2472068560 citedByCount "4" @default.
- W2472068560 countsByYear W24720685602019 @default.
- W2472068560 countsByYear W24720685602020 @default.
- W2472068560 crossrefType "journal-article" @default.
- W2472068560 hasAuthorship W2472068560A5027556687 @default.
- W2472068560 hasAuthorship W2472068560A5058391040 @default.
- W2472068560 hasAuthorship W2472068560A5074150876 @default.
- W2472068560 hasConcept C105795698 @default.
- W2472068560 hasConcept C11413529 @default.
- W2472068560 hasConcept C120174047 @default.
- W2472068560 hasConcept C131979681 @default.
- W2472068560 hasConcept C153180895 @default.
- W2472068560 hasConcept C154945302 @default.
- W2472068560 hasConcept C165064840 @default.
- W2472068560 hasConcept C195958017 @default.
- W2472068560 hasConcept C33923547 @default.
- W2472068560 hasConcept C41008148 @default.
- W2472068560 hasConcept C73555534 @default.
- W2472068560 hasConceptScore W2472068560C105795698 @default.
- W2472068560 hasConceptScore W2472068560C11413529 @default.
- W2472068560 hasConceptScore W2472068560C120174047 @default.
- W2472068560 hasConceptScore W2472068560C131979681 @default.
- W2472068560 hasConceptScore W2472068560C153180895 @default.
- W2472068560 hasConceptScore W2472068560C154945302 @default.
- W2472068560 hasConceptScore W2472068560C165064840 @default.
- W2472068560 hasConceptScore W2472068560C195958017 @default.
- W2472068560 hasConceptScore W2472068560C33923547 @default.
- W2472068560 hasConceptScore W2472068560C41008148 @default.
- W2472068560 hasConceptScore W2472068560C73555534 @default.
- W2472068560 hasLocation W24720685601 @default.
- W2472068560 hasOpenAccess W2472068560 @default.
- W2472068560 hasPrimaryLocation W24720685601 @default.
- W2472068560 hasRelatedWork W1907886551 @default.
- W2472068560 hasRelatedWork W2018349673 @default.
- W2472068560 hasRelatedWork W2069615085 @default.
- W2472068560 hasRelatedWork W2097716219 @default.
- W2472068560 hasRelatedWork W2128833152 @default.
- W2472068560 hasRelatedWork W2135274593 @default.
- W2472068560 hasRelatedWork W2160155345 @default.
- W2472068560 hasRelatedWork W2322138768 @default.
- W2472068560 hasRelatedWork W2379711816 @default.
- W2472068560 hasRelatedWork W2523280582 @default.
- W2472068560 hasRelatedWork W2779195627 @default.
- W2472068560 hasRelatedWork W2791578389 @default.
- W2472068560 hasRelatedWork W2921158648 @default.
- W2472068560 hasRelatedWork W3026926932 @default.
- W2472068560 hasRelatedWork W3027816323 @default.
- W2472068560 hasRelatedWork W3086058896 @default.
- W2472068560 hasRelatedWork W3129380256 @default.
- W2472068560 hasRelatedWork W825106720 @default.
- W2472068560 hasRelatedWork W2928038790 @default.
- W2472068560 hasRelatedWork W3181149191 @default.
- W2472068560 isParatext "false" @default.
- W2472068560 isRetracted "false" @default.
- W2472068560 magId "2472068560" @default.
- W2472068560 workType "article" @default.