Matches in SemOpenAlex for { <https://semopenalex.org/work/W2472192521> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2472192521 endingPage "1" @default.
- W2472192521 startingPage "1" @default.
- W2472192521 abstract "With the ever increasing number of large scale Internet applications, inter-data-center (inter-DC) data transfers are becoming more and more common. Traditional inter-DC transfers suffer from both low utilization and congestion, and traffic prediction is an important method to optimize these transfers. Inter-DC traffic is harder to predict than many other types of network traffic because it is dominated by a few large applications. We propose a model that significantly reduces the prediction errors. In our model, we combine wavelet transform with artificial neural network to improve prediction accuracy. Specifically, we explicitly add information of sublink traffic and elephant flows, the least predictable yet dominating traffic in inter-DC network, into our prediction model. To reduce the amount of monitoring overhead for the elephant flow information, we add interpolation to fill in the unknown values in the elephant flows. We demonstrate that we can reduce prediction errors over existing methods by 5%~30%. Our prediction is in production as part of the traffic scheduling system at Baidu, one of the largest Internet companies in China, helping to reduce the peak network bandwidth." @default.
- W2472192521 created "2016-07-22" @default.
- W2472192521 creator A5004486222 @default.
- W2472192521 creator A5048240548 @default.
- W2472192521 creator A5057287134 @default.
- W2472192521 creator A5058060903 @default.
- W2472192521 creator A5061599798 @default.
- W2472192521 creator A5064842058 @default.
- W2472192521 date "2016-01-01" @default.
- W2472192521 modified "2023-09-26" @default.
- W2472192521 title "Predicting Inter-Data-Center Network Traffic Using Elephant Flow and Sublink Information" @default.
- W2472192521 cites W114517082 @default.
- W2472192521 cites W12596926 @default.
- W2472192521 cites W1586335931 @default.
- W2472192521 cites W1590867255 @default.
- W2472192521 cites W1937262472 @default.
- W2472192521 cites W1980462675 @default.
- W2472192521 cites W1993044534 @default.
- W2472192521 cites W2007422655 @default.
- W2472192521 cites W2024377782 @default.
- W2472192521 cites W2055781590 @default.
- W2472192521 cites W2077590806 @default.
- W2472192521 cites W2085849301 @default.
- W2472192521 cites W2094142108 @default.
- W2472192521 cites W2099657323 @default.
- W2472192521 cites W2116888160 @default.
- W2472192521 cites W2117014758 @default.
- W2472192521 cites W2120390927 @default.
- W2472192521 cites W2126831543 @default.
- W2472192521 cites W2136922672 @default.
- W2472192521 cites W2138169724 @default.
- W2472192521 cites W2148506461 @default.
- W2472192521 cites W2155669300 @default.
- W2472192521 cites W2162870748 @default.
- W2472192521 cites W2164096531 @default.
- W2472192521 cites W2170419262 @default.
- W2472192521 cites W2535337293 @default.
- W2472192521 cites W2998113761 @default.
- W2472192521 cites W4236202168 @default.
- W2472192521 cites W4242688646 @default.
- W2472192521 doi "https://doi.org/10.1109/tnsm.2016.2588500" @default.
- W2472192521 hasPublicationYear "2016" @default.
- W2472192521 type Work @default.
- W2472192521 sameAs 2472192521 @default.
- W2472192521 citedByCount "23" @default.
- W2472192521 countsByYear W24721925212017 @default.
- W2472192521 countsByYear W24721925212018 @default.
- W2472192521 countsByYear W24721925212019 @default.
- W2472192521 countsByYear W24721925212020 @default.
- W2472192521 countsByYear W24721925212021 @default.
- W2472192521 countsByYear W24721925212022 @default.
- W2472192521 countsByYear W24721925212023 @default.
- W2472192521 crossrefType "journal-article" @default.
- W2472192521 hasAuthorship W2472192521A5004486222 @default.
- W2472192521 hasAuthorship W2472192521A5048240548 @default.
- W2472192521 hasAuthorship W2472192521A5057287134 @default.
- W2472192521 hasAuthorship W2472192521A5058060903 @default.
- W2472192521 hasAuthorship W2472192521A5061599798 @default.
- W2472192521 hasAuthorship W2472192521A5064842058 @default.
- W2472192521 hasConcept C110875604 @default.
- W2472192521 hasConcept C124101348 @default.
- W2472192521 hasConcept C136764020 @default.
- W2472192521 hasConcept C153740404 @default.
- W2472192521 hasConcept C176715033 @default.
- W2472192521 hasConcept C31258907 @default.
- W2472192521 hasConcept C41008148 @default.
- W2472192521 hasConcept C79403827 @default.
- W2472192521 hasConceptScore W2472192521C110875604 @default.
- W2472192521 hasConceptScore W2472192521C124101348 @default.
- W2472192521 hasConceptScore W2472192521C136764020 @default.
- W2472192521 hasConceptScore W2472192521C153740404 @default.
- W2472192521 hasConceptScore W2472192521C176715033 @default.
- W2472192521 hasConceptScore W2472192521C31258907 @default.
- W2472192521 hasConceptScore W2472192521C41008148 @default.
- W2472192521 hasConceptScore W2472192521C79403827 @default.
- W2472192521 hasLocation W24721925211 @default.
- W2472192521 hasOpenAccess W2472192521 @default.
- W2472192521 hasPrimaryLocation W24721925211 @default.
- W2472192521 hasRelatedWork W1519398290 @default.
- W2472192521 hasRelatedWork W1967571652 @default.
- W2472192521 hasRelatedWork W2056851291 @default.
- W2472192521 hasRelatedWork W2130966263 @default.
- W2472192521 hasRelatedWork W2347219288 @default.
- W2472192521 hasRelatedWork W2363207358 @default.
- W2472192521 hasRelatedWork W2363789696 @default.
- W2472192521 hasRelatedWork W2366221835 @default.
- W2472192521 hasRelatedWork W2789525959 @default.
- W2472192521 hasRelatedWork W2894308754 @default.
- W2472192521 isParatext "false" @default.
- W2472192521 isRetracted "false" @default.
- W2472192521 magId "2472192521" @default.
- W2472192521 workType "article" @default.