Matches in SemOpenAlex for { <https://semopenalex.org/work/W2472218453> ?p ?o ?g. }
- W2472218453 endingPage "793" @default.
- W2472218453 startingPage "784" @default.
- W2472218453 abstract "The study presented in this paper uses a mathematical model to measure the degree in which a product will be perceived as environmentally friendly from its physical attributes. A model based on genetic algorithms and neural networks was developed to predict the judgement of the users about environmental friendliness of different tables. Opinions of real users about a large set of tables were used to train the model. The results of the study suggest that, using this procedure in advanced stages of product design process, designers can determine the set of product's physical attributes that best convey the idea of “environmentally sustainable” to the customer. The analysis of the obtained model allows establishing how different product's attributes influence users' perception. From these results, the utilization of users' affective response models to design the appearance of environmentally sustainable products is discussed." @default.
- W2472218453 created "2016-07-22" @default.
- W2472218453 creator A5046546561 @default.
- W2472218453 creator A5055485127 @default.
- W2472218453 creator A5079873073 @default.
- W2472218453 date "2016-11-01" @default.
- W2472218453 modified "2023-10-16" @default.
- W2472218453 title "Designing the appearance of environmentally sustainable products" @default.
- W2472218453 cites W1606163323 @default.
- W2472218453 cites W1963591044 @default.
- W2472218453 cites W1968048052 @default.
- W2472218453 cites W1968894113 @default.
- W2472218453 cites W1969331495 @default.
- W2472218453 cites W1974013231 @default.
- W2472218453 cites W1975132415 @default.
- W2472218453 cites W1986281494 @default.
- W2472218453 cites W1993747718 @default.
- W2472218453 cites W1998981782 @default.
- W2472218453 cites W2016304648 @default.
- W2472218453 cites W2019800008 @default.
- W2472218453 cites W2022179355 @default.
- W2472218453 cites W2031878340 @default.
- W2472218453 cites W2039874983 @default.
- W2472218453 cites W2041780559 @default.
- W2472218453 cites W2045523936 @default.
- W2472218453 cites W2046989007 @default.
- W2472218453 cites W2049172611 @default.
- W2472218453 cites W2056141974 @default.
- W2472218453 cites W2059922057 @default.
- W2472218453 cites W2060549586 @default.
- W2472218453 cites W2064638450 @default.
- W2472218453 cites W2070828591 @default.
- W2472218453 cites W2073783071 @default.
- W2472218453 cites W2077231444 @default.
- W2472218453 cites W2077674070 @default.
- W2472218453 cites W2089182334 @default.
- W2472218453 cites W2089455678 @default.
- W2472218453 cites W2092507447 @default.
- W2472218453 cites W2098134274 @default.
- W2472218453 cites W2103458538 @default.
- W2472218453 cites W2114390958 @default.
- W2472218453 cites W2131329059 @default.
- W2472218453 cites W2133322701 @default.
- W2472218453 cites W2140980071 @default.
- W2472218453 cites W2181098794 @default.
- W2472218453 cites W3122377085 @default.
- W2472218453 cites W4230069561 @default.
- W2472218453 cites W4247557722 @default.
- W2472218453 cites W4253644162 @default.
- W2472218453 cites W5731987 @default.
- W2472218453 doi "https://doi.org/10.1016/j.jclepro.2016.06.173" @default.
- W2472218453 hasPublicationYear "2016" @default.
- W2472218453 type Work @default.
- W2472218453 sameAs 2472218453 @default.
- W2472218453 citedByCount "15" @default.
- W2472218453 countsByYear W24722184532017 @default.
- W2472218453 countsByYear W24722184532018 @default.
- W2472218453 countsByYear W24722184532019 @default.
- W2472218453 countsByYear W24722184532020 @default.
- W2472218453 countsByYear W24722184532021 @default.
- W2472218453 countsByYear W24722184532022 @default.
- W2472218453 countsByYear W24722184532023 @default.
- W2472218453 crossrefType "journal-article" @default.
- W2472218453 hasAuthorship W2472218453A5046546561 @default.
- W2472218453 hasAuthorship W2472218453A5055485127 @default.
- W2472218453 hasAuthorship W2472218453A5079873073 @default.
- W2472218453 hasBestOaLocation W24722184532 @default.
- W2472218453 hasConcept C111919701 @default.
- W2472218453 hasConcept C112930515 @default.
- W2472218453 hasConcept C124101348 @default.
- W2472218453 hasConcept C127413603 @default.
- W2472218453 hasConcept C144133560 @default.
- W2472218453 hasConcept C15744967 @default.
- W2472218453 hasConcept C169760540 @default.
- W2472218453 hasConcept C171534860 @default.
- W2472218453 hasConcept C177264268 @default.
- W2472218453 hasConcept C17744445 @default.
- W2472218453 hasConcept C18903297 @default.
- W2472218453 hasConcept C195094911 @default.
- W2472218453 hasConcept C199360897 @default.
- W2472218453 hasConcept C199539241 @default.
- W2472218453 hasConcept C2524010 @default.
- W2472218453 hasConcept C26760741 @default.
- W2472218453 hasConcept C2776548248 @default.
- W2472218453 hasConcept C2780009758 @default.
- W2472218453 hasConcept C33923547 @default.
- W2472218453 hasConcept C41008148 @default.
- W2472218453 hasConcept C502907923 @default.
- W2472218453 hasConcept C66204764 @default.
- W2472218453 hasConcept C86803240 @default.
- W2472218453 hasConcept C90673727 @default.
- W2472218453 hasConcept C98045186 @default.
- W2472218453 hasConceptScore W2472218453C111919701 @default.
- W2472218453 hasConceptScore W2472218453C112930515 @default.
- W2472218453 hasConceptScore W2472218453C124101348 @default.
- W2472218453 hasConceptScore W2472218453C127413603 @default.
- W2472218453 hasConceptScore W2472218453C144133560 @default.
- W2472218453 hasConceptScore W2472218453C15744967 @default.