Matches in SemOpenAlex for { <https://semopenalex.org/work/W2472630932> ?p ?o ?g. }
- W2472630932 endingPage "807" @default.
- W2472630932 startingPage "783" @default.
- W2472630932 abstract "We investigate the phenomenon of delayed yield in reversible colloidal gels via dynamic simulation, with a view toward revealing the microscopic particle dynamics and structural transformations that underlie the rheological behavior before, during, and after yield. Prior experimental studies reveal a pronounced delay period between application of a fixed shear stress and the onset of liquidlike flow, a so-called “delay time.” Catastrophic network failure—with sudden, cascading rupture of particle clusters or strands—is the primary model proposed for the structural evolution underlying rheological yield. However, no direct observation of such evolution has been made, owing to the difficulty of obtaining detailed microstructural information during the rapid yield event. Here, we utilize dynamic simulation to examine the microstructural mechanics and rheology of delayed yield. A moderately concentrated dispersion of Brownian hard spheres interacts via a short-range attractive potential of O(kT) that leads to arrested phase separation and the formation of a bicontinuous network of reversibly bonded particles. The linear-response rheology and coarsening dynamics of this system were characterized in our recent work. In the present study, a step shear stress is imposed on the gel, and its bulk deformation, as well as detailed positions and dynamics of all particles, are monitored over time. Immediately after the stress is imposed, the gel undergoes solidlike creep regardless of the strength of the applied stress. However, a minimum or “critical stress” is required to initiate yield: When the imposed stress is weak compared to the Brownian stress, the gel continues to undergo slow creeping deformation with no transition to liquidlike flow. Under stronger stress, creep is followed by a sudden increase in the strain rate, signaling yield, which then gives way to liquidlike viscous flow. The duration of the creep regime prior to yield is consistent with the delay time identified in prior experimental studies, decreasing monotonically with increasing applied stress. However, when the deformation rate is interrogated as a function of strain (rather than time), we find that a critical strain emerges: Yield occurs at the same extent of deformation regardless of the magnitude of the applied stress. Surprisingly, the gel network can remain fully connected throughout yield, with as few as 0.1% of particle bonds lost during yield, which relieve local glassy frustration and create localized liquidlike regions that enable yield. Brownian motion plays a central role in this behavior: When thermal motion is “frozen out,” both the delay time and the critical yield stress increase, showing that Brownian motion facilitates yield. Beyond yield, the long-time behavior depends qualitatively on the strength of the applied stress. In particular, at intermediate stresses, a “re-entrant solid” regime emerges, whereupon a flowing gel resolidifies, owing to flow-enhanced structural coarsening. A nonequilibrium phase diagram is presented that categorizes, and can be used to predict, the ultimate gel fate as a function of imposed stress. We make a connection between these behaviors and the process of ongoing phase separation in arrested colloidal gels." @default.
- W2472630932 created "2016-07-22" @default.
- W2472630932 creator A5052996738 @default.
- W2472630932 creator A5075841937 @default.
- W2472630932 creator A5089917537 @default.
- W2472630932 date "2016-06-29" @default.
- W2472630932 modified "2023-10-06" @default.
- W2472630932 title "Delayed yield in colloidal gels: Creep, flow, and re-entrant solid regimes" @default.
- W2472630932 cites W1659688442 @default.
- W2472630932 cites W1936051350 @default.
- W2472630932 cites W1964489076 @default.
- W2472630932 cites W1965564512 @default.
- W2472630932 cites W1967718603 @default.
- W2472630932 cites W1971138985 @default.
- W2472630932 cites W1971762740 @default.
- W2472630932 cites W1972508867 @default.
- W2472630932 cites W1972659566 @default.
- W2472630932 cites W1973020591 @default.
- W2472630932 cites W1974669739 @default.
- W2472630932 cites W1981116291 @default.
- W2472630932 cites W1986930367 @default.
- W2472630932 cites W1987565940 @default.
- W2472630932 cites W1988899986 @default.
- W2472630932 cites W1996405851 @default.
- W2472630932 cites W1996833978 @default.
- W2472630932 cites W2002754781 @default.
- W2472630932 cites W2003450762 @default.
- W2472630932 cites W2006340321 @default.
- W2472630932 cites W2006638207 @default.
- W2472630932 cites W2014407301 @default.
- W2472630932 cites W2015355112 @default.
- W2472630932 cites W2016409477 @default.
- W2472630932 cites W2017063430 @default.
- W2472630932 cites W2019465613 @default.
- W2472630932 cites W2024448230 @default.
- W2472630932 cites W2027578254 @default.
- W2472630932 cites W2032701041 @default.
- W2472630932 cites W2032879212 @default.
- W2472630932 cites W2033220654 @default.
- W2472630932 cites W2034439686 @default.
- W2472630932 cites W2041914224 @default.
- W2472630932 cites W2042158898 @default.
- W2472630932 cites W2046663303 @default.
- W2472630932 cites W2047800515 @default.
- W2472630932 cites W2048646133 @default.
- W2472630932 cites W2049860107 @default.
- W2472630932 cites W2050859238 @default.
- W2472630932 cites W2063604908 @default.
- W2472630932 cites W2065225076 @default.
- W2472630932 cites W2070005887 @default.
- W2472630932 cites W2072896122 @default.
- W2472630932 cites W2073658284 @default.
- W2472630932 cites W2081693079 @default.
- W2472630932 cites W2082496577 @default.
- W2472630932 cites W2085983711 @default.
- W2472630932 cites W2088438936 @default.
- W2472630932 cites W2091980176 @default.
- W2472630932 cites W2094132409 @default.
- W2472630932 cites W2096828126 @default.
- W2472630932 cites W2098254896 @default.
- W2472630932 cites W2101961372 @default.
- W2472630932 cites W2126393142 @default.
- W2472630932 cites W2134415357 @default.
- W2472630932 cites W2135545182 @default.
- W2472630932 cites W2139737213 @default.
- W2472630932 cites W2153581398 @default.
- W2472630932 cites W2158180070 @default.
- W2472630932 cites W2163199862 @default.
- W2472630932 cites W2166837121 @default.
- W2472630932 cites W2314950626 @default.
- W2472630932 cites W3103535785 @default.
- W2472630932 cites W4211178033 @default.
- W2472630932 cites W4236139928 @default.
- W2472630932 cites W4361806932 @default.
- W2472630932 doi "https://doi.org/10.1122/1.4954640" @default.
- W2472630932 hasPublicationYear "2016" @default.
- W2472630932 type Work @default.
- W2472630932 sameAs 2472630932 @default.
- W2472630932 citedByCount "80" @default.
- W2472630932 countsByYear W24726309322016 @default.
- W2472630932 countsByYear W24726309322017 @default.
- W2472630932 countsByYear W24726309322018 @default.
- W2472630932 countsByYear W24726309322019 @default.
- W2472630932 countsByYear W24726309322020 @default.
- W2472630932 countsByYear W24726309322021 @default.
- W2472630932 countsByYear W24726309322022 @default.
- W2472630932 countsByYear W24726309322023 @default.
- W2472630932 crossrefType "journal-article" @default.
- W2472630932 hasAuthorship W2472630932A5052996738 @default.
- W2472630932 hasAuthorship W2472630932A5075841937 @default.
- W2472630932 hasAuthorship W2472630932A5089917537 @default.
- W2472630932 hasConcept C111368507 @default.
- W2472630932 hasConcept C112401455 @default.
- W2472630932 hasConcept C119887631 @default.
- W2472630932 hasConcept C121332964 @default.
- W2472630932 hasConcept C127313418 @default.
- W2472630932 hasConcept C127413603 @default.
- W2472630932 hasConcept C130603088 @default.