Matches in SemOpenAlex for { <https://semopenalex.org/work/W2472744974> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2472744974 endingPage "102" @default.
- W2472744974 startingPage "83" @default.
- W2472744974 abstract "The research presents a process for applying data mining techniques on dental medical records comprised of oral conditions and different dental procedures that are performed on various patients. The dental expert decides to pursue a set of procedures based on the examination and diagnostics. Digital dentistry is becoming more and more active now, hence this research addresses the issues in exploiting the digital data at its potential like heterogeneous data gathering, access restrictions or inadequate patient data and lack of expert systems to utilize the data. It proposes a way to deal with the dental medical records and apply data mining. Having gathered the dental data and prepared it through pre-processing techniques, unsupervised learning techniques were applied to perform clustering in order to discover interesting patterns and assigning these a label class. Mostly the patients lie in the mild and moderate dental patient’s class. The most common problem that is being noticed in patients is tooth cavity with a treatment named “resin-based composite—one surface, posterior”. Using this labelled data set, supervised learning algorithms were applied to train and test the data for predicting the targeted class accurately. A comparison between classification algorithms based on their accuracy was made to filter out the best outcome. An expert system has also been developed to support the idea, ease up the decision making process and automate the manual practices that are being used. It provides quick recommendations to the medical expert in examining the patient depending upon the diagnosis. Research reveals that decision tree runs better than others on our data set with highest accuracy in predicting the Patients’ targeted classes." @default.
- W2472744974 created "2016-07-22" @default.
- W2472744974 creator A5016350336 @default.
- W2472744974 creator A5046709894 @default.
- W2472744974 date "2016-01-01" @default.
- W2472744974 modified "2023-10-14" @default.
- W2472744974 title "Applying Supervised and Unsupervised Learning Techniques on Dental Patients’ Records" @default.
- W2472744974 cites W1563708929 @default.
- W2472744974 cites W1842718284 @default.
- W2472744974 cites W1977556410 @default.
- W2472744974 cites W2000905548 @default.
- W2472744974 cites W2041976578 @default.
- W2472744974 cites W2042660152 @default.
- W2472744974 cites W2058678632 @default.
- W2472744974 cites W2073404525 @default.
- W2472744974 cites W2082898825 @default.
- W2472744974 cites W2103037286 @default.
- W2472744974 cites W2127282486 @default.
- W2472744974 cites W2133841540 @default.
- W2472744974 cites W2149802037 @default.
- W2472744974 cites W2166609034 @default.
- W2472744974 cites W4244340606 @default.
- W2472744974 cites W1977907050 @default.
- W2472744974 doi "https://doi.org/10.1007/978-3-319-33353-3_5" @default.
- W2472744974 hasPublicationYear "2016" @default.
- W2472744974 type Work @default.
- W2472744974 sameAs 2472744974 @default.
- W2472744974 citedByCount "2" @default.
- W2472744974 countsByYear W24727449742020 @default.
- W2472744974 crossrefType "book-chapter" @default.
- W2472744974 hasAuthorship W2472744974A5016350336 @default.
- W2472744974 hasAuthorship W2472744974A5046709894 @default.
- W2472744974 hasConcept C106131492 @default.
- W2472744974 hasConcept C111919701 @default.
- W2472744974 hasConcept C113174947 @default.
- W2472744974 hasConcept C119857082 @default.
- W2472744974 hasConcept C124101348 @default.
- W2472744974 hasConcept C134306372 @default.
- W2472744974 hasConcept C136389625 @default.
- W2472744974 hasConcept C154945302 @default.
- W2472744974 hasConcept C177264268 @default.
- W2472744974 hasConcept C199360897 @default.
- W2472744974 hasConcept C2777212361 @default.
- W2472744974 hasConcept C31972630 @default.
- W2472744974 hasConcept C33923547 @default.
- W2472744974 hasConcept C41008148 @default.
- W2472744974 hasConcept C50644808 @default.
- W2472744974 hasConcept C58489278 @default.
- W2472744974 hasConcept C73555534 @default.
- W2472744974 hasConcept C84525736 @default.
- W2472744974 hasConcept C98045186 @default.
- W2472744974 hasConceptScore W2472744974C106131492 @default.
- W2472744974 hasConceptScore W2472744974C111919701 @default.
- W2472744974 hasConceptScore W2472744974C113174947 @default.
- W2472744974 hasConceptScore W2472744974C119857082 @default.
- W2472744974 hasConceptScore W2472744974C124101348 @default.
- W2472744974 hasConceptScore W2472744974C134306372 @default.
- W2472744974 hasConceptScore W2472744974C136389625 @default.
- W2472744974 hasConceptScore W2472744974C154945302 @default.
- W2472744974 hasConceptScore W2472744974C177264268 @default.
- W2472744974 hasConceptScore W2472744974C199360897 @default.
- W2472744974 hasConceptScore W2472744974C2777212361 @default.
- W2472744974 hasConceptScore W2472744974C31972630 @default.
- W2472744974 hasConceptScore W2472744974C33923547 @default.
- W2472744974 hasConceptScore W2472744974C41008148 @default.
- W2472744974 hasConceptScore W2472744974C50644808 @default.
- W2472744974 hasConceptScore W2472744974C58489278 @default.
- W2472744974 hasConceptScore W2472744974C73555534 @default.
- W2472744974 hasConceptScore W2472744974C84525736 @default.
- W2472744974 hasConceptScore W2472744974C98045186 @default.
- W2472744974 hasLocation W24727449741 @default.
- W2472744974 hasOpenAccess W2472744974 @default.
- W2472744974 hasPrimaryLocation W24727449741 @default.
- W2472744974 hasRelatedWork W1534720161 @default.
- W2472744974 hasRelatedWork W1926736923 @default.
- W2472744974 hasRelatedWork W2083665254 @default.
- W2472744974 hasRelatedWork W2132641928 @default.
- W2472744974 hasRelatedWork W2393816671 @default.
- W2472744974 hasRelatedWork W2804364458 @default.
- W2472744974 hasRelatedWork W2804957450 @default.
- W2472744974 hasRelatedWork W2942177010 @default.
- W2472744974 hasRelatedWork W4298130764 @default.
- W2472744974 hasRelatedWork W4310225030 @default.
- W2472744974 isParatext "false" @default.
- W2472744974 isRetracted "false" @default.
- W2472744974 magId "2472744974" @default.
- W2472744974 workType "book-chapter" @default.