Matches in SemOpenAlex for { <https://semopenalex.org/work/W2472876510> ?p ?o ?g. }
- W2472876510 endingPage "19" @default.
- W2472876510 startingPage "1" @default.
- W2472876510 abstract "In this article, we introduce a method to overcome one of the main challenges of person reidentification in multicamera networks, namely cross-view appearance changes. The proposed solution addresses the extreme variability of person appearance in different camera views by exploiting multiple feature representations. For each feature, kernel canonical correlation analysis with different kernels is employed to learn several projection spaces in which the appearance correlation between samples of the same person observed from different cameras is maximized. An iterative logistic regression is finally used to select and weight the contributions of each projection and perform the matching between the two views. Experimental evaluation shows that the proposed solution obtains comparable performance on the VIPeR and PRID 450s datasets and improves on the PRID and CUHK01 datasets with respect to the state of the art." @default.
- W2472876510 created "2016-07-22" @default.
- W2472876510 creator A5036430028 @default.
- W2472876510 creator A5067090814 @default.
- W2472876510 creator A5089059382 @default.
- W2472876510 date "2017-03-06" @default.
- W2472876510 modified "2023-09-24" @default.
- W2472876510 title "Multichannel-Kernel Canonical Correlation Analysis for Cross-View Person Reidentification" @default.
- W2472876510 cites W140822990 @default.
- W2472876510 cites W1518138188 @default.
- W2472876510 cites W1571787080 @default.
- W2472876510 cites W1602182271 @default.
- W2472876510 cites W166429404 @default.
- W2472876510 cites W1709635438 @default.
- W2472876510 cites W1920259731 @default.
- W2472876510 cites W1928419358 @default.
- W2472876510 cites W1949591461 @default.
- W2472876510 cites W1962025484 @default.
- W2472876510 cites W1968735851 @default.
- W2472876510 cites W1979260620 @default.
- W2472876510 cites W1982925187 @default.
- W2472876510 cites W1991209141 @default.
- W2472876510 cites W2005220741 @default.
- W2472876510 cites W2009907187 @default.
- W2472876510 cites W2022469758 @default.
- W2472876510 cites W2026569857 @default.
- W2472876510 cites W2034883938 @default.
- W2472876510 cites W2046835352 @default.
- W2472876510 cites W2047632871 @default.
- W2472876510 cites W2079972027 @default.
- W2472876510 cites W2087793398 @default.
- W2472876510 cites W2098807270 @default.
- W2472876510 cites W2100235303 @default.
- W2472876510 cites W2106053110 @default.
- W2472876510 cites W2109824782 @default.
- W2472876510 cites W2122562124 @default.
- W2472876510 cites W2125889200 @default.
- W2472876510 cites W2126791727 @default.
- W2472876510 cites W2135442311 @default.
- W2472876510 cites W2145287260 @default.
- W2472876510 cites W2157598322 @default.
- W2472876510 cites W2161969291 @default.
- W2472876510 cites W2163352848 @default.
- W2472876510 cites W2167292325 @default.
- W2472876510 cites W2173158975 @default.
- W2472876510 cites W2326772079 @default.
- W2472876510 cites W36706009 @default.
- W2472876510 cites W42769906 @default.
- W2472876510 cites W46454230 @default.
- W2472876510 doi "https://doi.org/10.1145/3038916" @default.
- W2472876510 hasPublicationYear "2017" @default.
- W2472876510 type Work @default.
- W2472876510 sameAs 2472876510 @default.
- W2472876510 citedByCount "33" @default.
- W2472876510 countsByYear W24728765102017 @default.
- W2472876510 countsByYear W24728765102018 @default.
- W2472876510 countsByYear W24728765102019 @default.
- W2472876510 countsByYear W24728765102020 @default.
- W2472876510 countsByYear W24728765102021 @default.
- W2472876510 countsByYear W24728765102022 @default.
- W2472876510 countsByYear W24728765102023 @default.
- W2472876510 crossrefType "journal-article" @default.
- W2472876510 hasAuthorship W2472876510A5036430028 @default.
- W2472876510 hasAuthorship W2472876510A5067090814 @default.
- W2472876510 hasAuthorship W2472876510A5089059382 @default.
- W2472876510 hasBestOaLocation W24728765102 @default.
- W2472876510 hasConcept C105795698 @default.
- W2472876510 hasConcept C11413529 @default.
- W2472876510 hasConcept C114614502 @default.
- W2472876510 hasConcept C115961682 @default.
- W2472876510 hasConcept C117220453 @default.
- W2472876510 hasConcept C138885662 @default.
- W2472876510 hasConcept C153180895 @default.
- W2472876510 hasConcept C153874254 @default.
- W2472876510 hasConcept C154945302 @default.
- W2472876510 hasConcept C165064840 @default.
- W2472876510 hasConcept C2524010 @default.
- W2472876510 hasConcept C2776401178 @default.
- W2472876510 hasConcept C2983787585 @default.
- W2472876510 hasConcept C33923547 @default.
- W2472876510 hasConcept C41008148 @default.
- W2472876510 hasConcept C41895202 @default.
- W2472876510 hasConcept C57493831 @default.
- W2472876510 hasConcept C74193536 @default.
- W2472876510 hasConceptScore W2472876510C105795698 @default.
- W2472876510 hasConceptScore W2472876510C11413529 @default.
- W2472876510 hasConceptScore W2472876510C114614502 @default.
- W2472876510 hasConceptScore W2472876510C115961682 @default.
- W2472876510 hasConceptScore W2472876510C117220453 @default.
- W2472876510 hasConceptScore W2472876510C138885662 @default.
- W2472876510 hasConceptScore W2472876510C153180895 @default.
- W2472876510 hasConceptScore W2472876510C153874254 @default.
- W2472876510 hasConceptScore W2472876510C154945302 @default.
- W2472876510 hasConceptScore W2472876510C165064840 @default.
- W2472876510 hasConceptScore W2472876510C2524010 @default.
- W2472876510 hasConceptScore W2472876510C2776401178 @default.
- W2472876510 hasConceptScore W2472876510C2983787585 @default.
- W2472876510 hasConceptScore W2472876510C33923547 @default.