Matches in SemOpenAlex for { <https://semopenalex.org/work/W2473079742> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2473079742 abstract "If you want to understand how a complex electronicdevice works, you might start by obtaining a circuitdiagram. A sufficiently knowledgeable engineer could usethe diagram not only to determine what the device cando, but also to build a copy of it. When it comes to thebrain, things are not so simple. For several decades,neurobiologists have struggled to understand how themammalian brain carries out the computations thatmediate perception, cognition and behavior, and how thecircuits responsible for these computations emerge duringdevelopment. A major hindrance to these studies hasbeen the limited ability of available methods to describethe actual patterns of connections between neurons.Despite these technical limitations, a good deal is knownabout the organization and development of complexneural circuits. In the cerebral cortex of adult mammals,individual neurons are known to make precise axonalprojections to specific cortical layers (Fig. 1) [1-3], aswell as to functionally distinct compartments formingcolumns that run perpendicular to the cortical layers[4-6]. The latter compartments are exemplified by theocular dominance and orientation columns in the visualcortex, which are respectively specific for the leftor right eye and for the orientation of a contour in avisual stimulus.The mechanisms guiding the development of thesecircuits have been studied intensively by a number ofinvestigators (for recent reviews see [7-9]). Anatomicalstudies have revealed that the axonal arbors of developingneurons undergo considerable activity-dependent reorga-nization as they strive to find functionally appropriatecolumns with which to connect, while layer-specificprojections are formed with great precision from theoutset [9]. It is believed that during development ofcolumn-specific projections, transient connections areformed that allow neurons to use activity patterns todetect their correct synaptic partners.However, the anatomical studies that provide the basisfor our understanding of how such circuits developprovide only indirect information about whether con-nections are being formed at higher densities in somelocations than others. Crucial information about subtlechanges in connectivity that might occur as maturationproceeds is lacking, but is required to assess the role ofactivity-dependent mechanisms in shaping cortical cir-cuitry. Recent methodological advances are at lastmaking it possible to obtain this important information.In a recent paper in Science [10], Matthew Dalva andLawrence Katz of Duke University describe experimentsin which a novel scanning-laser 'photostimulation'method is used to follow developmental changes in theorganization of functional connections in primary visualcortex. The expectation is that this method will allownot only developing, but also adult, cortical circuits to beunderstood in considerably greater detail.In a 1979 Scientific American article entitled ThinkingAbout the Brain [11], Francis Crick stated that amethod that would make it possible to inject one neuronwith a substance that would then clearly stain allthe neurons connected to it, would be invaluable.Studies of neural circuitry using photostimulation dependon the use of latent, 'caged' forms of neurotransmitterFig. 1. Neurons in the cerebral cortexform precise patterns of axonal projec-tions. The diagram shows the patterns ofaxonal (blue) and dendritic (red)arborizations formed by neurons withcell bodies in different layers of theprimary visual cortex. Although the pro-jection patterns show considerablespecificity, there is a good deal of ambi-guity about the actual patterns of con-nections. The resolution of thisambiguity should be facilitated by thenew technique of scanning laser photo-stimulation [10] described in the text.(Adapted from [1].)1010" @default.
- W2473079742 created "2016-07-22" @default.
- W2473079742 creator A5066263096 @default.
- W2473079742 date "1994-01-01" @default.
- W2473079742 modified "2023-09-24" @default.
- W2473079742 title "Shedding light on neural circuits The ability to locally activate neurons in living brain slices by using light to release 'caged' neurotransmitter allows the organization and development of neural circuits to be studied at a hitherto impossible level of detail." @default.
- W2473079742 cites W1672439543 @default.
- W2473079742 cites W1981268965 @default.
- W2473079742 cites W1995702769 @default.
- W2473079742 cites W1997537188 @default.
- W2473079742 cites W2036512556 @default.
- W2473079742 cites W2046132746 @default.
- W2473079742 cites W2063108701 @default.
- W2473079742 cites W2079519119 @default.
- W2473079742 cites W2080464961 @default.
- W2473079742 cites W2084385479 @default.
- W2473079742 cites W2098580305 @default.
- W2473079742 cites W2114876443 @default.
- W2473079742 cites W2134598304 @default.
- W2473079742 cites W2172444777 @default.
- W2473079742 cites W2178044595 @default.
- W2473079742 cites W2491439639 @default.
- W2473079742 hasPublicationYear "1994" @default.
- W2473079742 type Work @default.
- W2473079742 sameAs 2473079742 @default.
- W2473079742 citedByCount "0" @default.
- W2473079742 crossrefType "journal-article" @default.
- W2473079742 hasAuthorship W2473079742A5066263096 @default.
- W2473079742 hasConcept C118403218 @default.
- W2473079742 hasConcept C15744967 @default.
- W2473079742 hasConcept C169760540 @default.
- W2473079742 hasConcept C180747234 @default.
- W2473079742 hasConcept C188147891 @default.
- W2473079742 hasConcept C26760741 @default.
- W2473079742 hasConcept C2779345533 @default.
- W2473079742 hasConcept C2779918689 @default.
- W2473079742 hasConcept C2781041448 @default.
- W2473079742 hasConcept C41008148 @default.
- W2473079742 hasConcept C86803240 @default.
- W2473079742 hasConceptScore W2473079742C118403218 @default.
- W2473079742 hasConceptScore W2473079742C15744967 @default.
- W2473079742 hasConceptScore W2473079742C169760540 @default.
- W2473079742 hasConceptScore W2473079742C180747234 @default.
- W2473079742 hasConceptScore W2473079742C188147891 @default.
- W2473079742 hasConceptScore W2473079742C26760741 @default.
- W2473079742 hasConceptScore W2473079742C2779345533 @default.
- W2473079742 hasConceptScore W2473079742C2779918689 @default.
- W2473079742 hasConceptScore W2473079742C2781041448 @default.
- W2473079742 hasConceptScore W2473079742C41008148 @default.
- W2473079742 hasConceptScore W2473079742C86803240 @default.
- W2473079742 hasLocation W24730797421 @default.
- W2473079742 hasOpenAccess W2473079742 @default.
- W2473079742 hasPrimaryLocation W24730797421 @default.
- W2473079742 hasRelatedWork W133836725 @default.
- W2473079742 hasRelatedWork W2004137960 @default.
- W2473079742 hasRelatedWork W2009154712 @default.
- W2473079742 hasRelatedWork W2044012436 @default.
- W2473079742 hasRelatedWork W2047271647 @default.
- W2473079742 hasRelatedWork W2048608067 @default.
- W2473079742 hasRelatedWork W2084364150 @default.
- W2473079742 hasRelatedWork W2101019073 @default.
- W2473079742 hasRelatedWork W2163101747 @default.
- W2473079742 hasRelatedWork W226310847 @default.
- W2473079742 hasRelatedWork W2278120755 @default.
- W2473079742 hasRelatedWork W2488815953 @default.
- W2473079742 hasRelatedWork W2497521609 @default.
- W2473079742 hasRelatedWork W2888531822 @default.
- W2473079742 hasRelatedWork W2898929289 @default.
- W2473079742 hasRelatedWork W3086398562 @default.
- W2473079742 hasRelatedWork W3197730258 @default.
- W2473079742 hasRelatedWork W36787389 @default.
- W2473079742 hasRelatedWork W43900824 @default.
- W2473079742 hasRelatedWork W50488741 @default.
- W2473079742 isParatext "false" @default.
- W2473079742 isRetracted "false" @default.
- W2473079742 magId "2473079742" @default.
- W2473079742 workType "article" @default.