Matches in SemOpenAlex for { <https://semopenalex.org/work/W2473595722> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2473595722 endingPage "569" @default.
- W2473595722 startingPage "552" @default.
- W2473595722 abstract "Logistics freight volume forecasting plays a crucial role in the formulation of a rational planning strategy for a country. To improve forecasting accuracy, a novel multilevel decompose–ensemble method based on trend and wavelet decomposition combined with a linear regression model (LR) and an auto regression model (AR) is proposed in this study. First, the original data are resolved into trend and non-trend subseries by trend transform. Then, non-trend subseries are further broken down into one approximation subseries and several detailed subseries by wavelet transform. With respect to their different dynamically changing features and influencing factors, trend subseries are forecast by LR and non-trend subseries are, respectively, forecast by AR. The final prediction results are the summation of these subseries predictions. Forecasting results prove that the complex forecasting problem has been decomposed into some simple problems based on this multilevel decompose–ensemble method, which can improve prediction accuracy, when compared with individual models, the traditional decompose–ensemble method and a combination model. Consequently, the proposed method is a feasible forecasting approach for freight volume. According to this multilevel decompose–ensemble forecasting method combined with LR and AR, China's logistics freight volume in 2017 will increase to 69 010·16 million metric tonnes, and the average annual growth for the coming 5 years is 10·9%." @default.
- W2473595722 created "2016-07-22" @default.
- W2473595722 creator A5022352705 @default.
- W2473595722 creator A5040231725 @default.
- W2473595722 date "2015-12-01" @default.
- W2473595722 modified "2023-09-26" @default.
- W2473595722 title "Freight volume forecasting based on a decompose–ensemble method" @default.
- W2473595722 cites W1971582966 @default.
- W2473595722 cites W1972732865 @default.
- W2473595722 cites W1975079639 @default.
- W2473595722 cites W1984500452 @default.
- W2473595722 cites W1993601879 @default.
- W2473595722 cites W2000691296 @default.
- W2473595722 cites W2000765441 @default.
- W2473595722 cites W2001511809 @default.
- W2473595722 cites W2015360069 @default.
- W2473595722 cites W2017645648 @default.
- W2473595722 cites W2025689845 @default.
- W2473595722 cites W2031769266 @default.
- W2473595722 cites W2036681246 @default.
- W2473595722 cites W2042792535 @default.
- W2473595722 cites W2058326618 @default.
- W2473595722 cites W2061507872 @default.
- W2473595722 cites W2089016853 @default.
- W2473595722 cites W2091353713 @default.
- W2473595722 cites W2094404630 @default.
- W2473595722 cites W2317936712 @default.
- W2473595722 doi "https://doi.org/10.1680/jtran.14.00064" @default.
- W2473595722 hasPublicationYear "2015" @default.
- W2473595722 type Work @default.
- W2473595722 sameAs 2473595722 @default.
- W2473595722 citedByCount "2" @default.
- W2473595722 countsByYear W24735957222015 @default.
- W2473595722 countsByYear W24735957222022 @default.
- W2473595722 crossrefType "journal-article" @default.
- W2473595722 hasAuthorship W2473595722A5022352705 @default.
- W2473595722 hasAuthorship W2473595722A5040231725 @default.
- W2473595722 hasConcept C119898033 @default.
- W2473595722 hasConcept C121332964 @default.
- W2473595722 hasConcept C127413603 @default.
- W2473595722 hasConcept C154945302 @default.
- W2473595722 hasConcept C176217482 @default.
- W2473595722 hasConcept C20556612 @default.
- W2473595722 hasConcept C21547014 @default.
- W2473595722 hasConcept C41008148 @default.
- W2473595722 hasConcept C47432892 @default.
- W2473595722 hasConcept C62520636 @default.
- W2473595722 hasConceptScore W2473595722C119898033 @default.
- W2473595722 hasConceptScore W2473595722C121332964 @default.
- W2473595722 hasConceptScore W2473595722C127413603 @default.
- W2473595722 hasConceptScore W2473595722C154945302 @default.
- W2473595722 hasConceptScore W2473595722C176217482 @default.
- W2473595722 hasConceptScore W2473595722C20556612 @default.
- W2473595722 hasConceptScore W2473595722C21547014 @default.
- W2473595722 hasConceptScore W2473595722C41008148 @default.
- W2473595722 hasConceptScore W2473595722C47432892 @default.
- W2473595722 hasConceptScore W2473595722C62520636 @default.
- W2473595722 hasIssue "6" @default.
- W2473595722 hasLocation W24735957221 @default.
- W2473595722 hasOpenAccess W2473595722 @default.
- W2473595722 hasPrimaryLocation W24735957221 @default.
- W2473595722 hasRelatedWork W2020996171 @default.
- W2473595722 hasRelatedWork W2054697996 @default.
- W2473595722 hasRelatedWork W2469743300 @default.
- W2473595722 hasRelatedWork W2538303451 @default.
- W2473595722 hasRelatedWork W266446692 @default.
- W2473595722 hasRelatedWork W2795913521 @default.
- W2473595722 hasRelatedWork W2908128570 @default.
- W2473595722 hasRelatedWork W2991626910 @default.
- W2473595722 hasRelatedWork W3014552397 @default.
- W2473595722 hasRelatedWork W397719860 @default.
- W2473595722 hasVolume "168" @default.
- W2473595722 isParatext "false" @default.
- W2473595722 isRetracted "false" @default.
- W2473595722 magId "2473595722" @default.
- W2473595722 workType "article" @default.