Matches in SemOpenAlex for { <https://semopenalex.org/work/W2474047844> ?p ?o ?g. }
- W2474047844 endingPage "830" @default.
- W2474047844 startingPage "823" @default.
- W2474047844 abstract "In this study technical diagnostic tests and economical lifetime assessment of transformers are investigated to evaluate the overall health condition of working transformers. Two artificial intelligence models including artificial neural network and adaptive neuro-fuzzy inference system models are presented to determine the health index for transformers. The technical and economical parameters are used as input parameters to develop the models. Technical parameters are extracted from oil characteristics and dissolved gas analysis of different transformers. Economical parameters are constructed with transformer capital investments, maintenance and operating costs. The models are developed using 226 experimental field datasets of transformers technical and economical parameters. The models are trained using 80% of the experimental datasets. The remaining 20% is used to evaluate the performance and applicability of the models. The results prove that the models can be used to determine the health condition of transformers with high accuracy." @default.
- W2474047844 created "2016-07-22" @default.
- W2474047844 creator A5024272836 @default.
- W2474047844 creator A5056451976 @default.
- W2474047844 date "2016-10-01" @default.
- W2474047844 modified "2023-10-01" @default.
- W2474047844 title "Health index calculation for power transformers using technical and economical parameters" @default.
- W2474047844 cites W1970964495 @default.
- W2474047844 cites W1973709251 @default.
- W2474047844 cites W1976526530 @default.
- W2474047844 cites W1980280332 @default.
- W2474047844 cites W1988400047 @default.
- W2474047844 cites W1992904314 @default.
- W2474047844 cites W1993303385 @default.
- W2474047844 cites W2012276257 @default.
- W2474047844 cites W2016086187 @default.
- W2474047844 cites W2019207321 @default.
- W2474047844 cites W2029291989 @default.
- W2474047844 cites W2029364429 @default.
- W2474047844 cites W2031757379 @default.
- W2474047844 cites W2035024536 @default.
- W2474047844 cites W2047580508 @default.
- W2474047844 cites W2051542965 @default.
- W2474047844 cites W2056493873 @default.
- W2474047844 cites W2069367957 @default.
- W2474047844 cites W2074939239 @default.
- W2474047844 cites W2076306561 @default.
- W2474047844 cites W2076648724 @default.
- W2474047844 cites W2105665303 @default.
- W2474047844 cites W2113312949 @default.
- W2474047844 cites W2129824381 @default.
- W2474047844 cites W2140417752 @default.
- W2474047844 cites W2263556947 @default.
- W2474047844 cites W2293209684 @default.
- W2474047844 cites W2535508589 @default.
- W2474047844 doi "https://doi.org/10.1049/iet-smt.2016.0184" @default.
- W2474047844 hasPublicationYear "2016" @default.
- W2474047844 type Work @default.
- W2474047844 sameAs 2474047844 @default.
- W2474047844 citedByCount "42" @default.
- W2474047844 countsByYear W24740478442017 @default.
- W2474047844 countsByYear W24740478442018 @default.
- W2474047844 countsByYear W24740478442019 @default.
- W2474047844 countsByYear W24740478442020 @default.
- W2474047844 countsByYear W24740478442021 @default.
- W2474047844 countsByYear W24740478442022 @default.
- W2474047844 countsByYear W24740478442023 @default.
- W2474047844 crossrefType "journal-article" @default.
- W2474047844 hasAuthorship W2474047844A5024272836 @default.
- W2474047844 hasAuthorship W2474047844A5056451976 @default.
- W2474047844 hasConcept C119599485 @default.
- W2474047844 hasConcept C119857082 @default.
- W2474047844 hasConcept C127413603 @default.
- W2474047844 hasConcept C154945302 @default.
- W2474047844 hasConcept C165801399 @default.
- W2474047844 hasConcept C181335627 @default.
- W2474047844 hasConcept C186108316 @default.
- W2474047844 hasConcept C195975749 @default.
- W2474047844 hasConcept C200601418 @default.
- W2474047844 hasConcept C2776214188 @default.
- W2474047844 hasConcept C2986395286 @default.
- W2474047844 hasConcept C2987376176 @default.
- W2474047844 hasConcept C41008148 @default.
- W2474047844 hasConcept C50644808 @default.
- W2474047844 hasConcept C58166 @default.
- W2474047844 hasConcept C66322947 @default.
- W2474047844 hasConcept C81818771 @default.
- W2474047844 hasConceptScore W2474047844C119599485 @default.
- W2474047844 hasConceptScore W2474047844C119857082 @default.
- W2474047844 hasConceptScore W2474047844C127413603 @default.
- W2474047844 hasConceptScore W2474047844C154945302 @default.
- W2474047844 hasConceptScore W2474047844C165801399 @default.
- W2474047844 hasConceptScore W2474047844C181335627 @default.
- W2474047844 hasConceptScore W2474047844C186108316 @default.
- W2474047844 hasConceptScore W2474047844C195975749 @default.
- W2474047844 hasConceptScore W2474047844C200601418 @default.
- W2474047844 hasConceptScore W2474047844C2776214188 @default.
- W2474047844 hasConceptScore W2474047844C2986395286 @default.
- W2474047844 hasConceptScore W2474047844C2987376176 @default.
- W2474047844 hasConceptScore W2474047844C41008148 @default.
- W2474047844 hasConceptScore W2474047844C50644808 @default.
- W2474047844 hasConceptScore W2474047844C58166 @default.
- W2474047844 hasConceptScore W2474047844C66322947 @default.
- W2474047844 hasConceptScore W2474047844C81818771 @default.
- W2474047844 hasIssue "7" @default.
- W2474047844 hasLocation W24740478441 @default.
- W2474047844 hasOpenAccess W2474047844 @default.
- W2474047844 hasPrimaryLocation W24740478441 @default.
- W2474047844 hasRelatedWork W1501630335 @default.
- W2474047844 hasRelatedWork W1643768816 @default.
- W2474047844 hasRelatedWork W1668308244 @default.
- W2474047844 hasRelatedWork W1865863772 @default.
- W2474047844 hasRelatedWork W2091885912 @default.
- W2474047844 hasRelatedWork W2122372740 @default.
- W2474047844 hasRelatedWork W2350643308 @default.
- W2474047844 hasRelatedWork W2562311745 @default.
- W2474047844 hasRelatedWork W2740272169 @default.
- W2474047844 hasRelatedWork W2986006230 @default.