Matches in SemOpenAlex for { <https://semopenalex.org/work/W2474360700> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2474360700 abstract "Multitask learning is an approach to machine learning, in which algorithm learns to solve multiple related problems. It tries to find one common model instead of building multiple separate models. Such a model is usually smaller than the sum of separate models, easier to understand and less likely to overfit training data. In prediction stage the algorithm predicts values for several problems at the same time. Problems that are learned together must be related, so that learning of one problem can improve learning of other problems. Currently this approach is used with tree models for either multiple classification or multiple regression tasks. In this work we extend the approach to mixed classification and regression tasks. During construction of trees different attribute selection methods are used in regression and classification. The returned scores are not directly comparable, so in our scenario we rank attributes for each task and choose the attribute that is best ranked in total. We implement multitask regression and classification tree, multitask bagging and multitask random forest based on rankings of attributes. We compare these algorithms with their single task variants, with regular multitask tree and with multitask neural network.We propose task relatedness measure based on ranking of attributes. In this way we can find related tasks in a dataset and use them together in multitask approach. On one dataset implemented multitask random forest works statistically significantly better than single-task version. On some datasets implemented algorithms work worse than single-task versions." @default.
- W2474360700 created "2016-07-22" @default.
- W2474360700 creator A5000743006 @default.
- W2474360700 date "2016-03-22" @default.
- W2474360700 modified "2023-09-27" @default.
- W2474360700 title "Multitask learning in classification and regression" @default.
- W2474360700 hasPublicationYear "2016" @default.
- W2474360700 type Work @default.
- W2474360700 sameAs 2474360700 @default.
- W2474360700 citedByCount "0" @default.
- W2474360700 crossrefType "dissertation" @default.
- W2474360700 hasAuthorship W2474360700A5000743006 @default.
- W2474360700 hasConcept C105795698 @default.
- W2474360700 hasConcept C113174947 @default.
- W2474360700 hasConcept C114614502 @default.
- W2474360700 hasConcept C119857082 @default.
- W2474360700 hasConcept C124101348 @default.
- W2474360700 hasConcept C134306372 @default.
- W2474360700 hasConcept C154945302 @default.
- W2474360700 hasConcept C162324750 @default.
- W2474360700 hasConcept C164226766 @default.
- W2474360700 hasConcept C169258074 @default.
- W2474360700 hasConcept C187736073 @default.
- W2474360700 hasConcept C189430467 @default.
- W2474360700 hasConcept C22019652 @default.
- W2474360700 hasConcept C2780451532 @default.
- W2474360700 hasConcept C28006648 @default.
- W2474360700 hasConcept C33923547 @default.
- W2474360700 hasConcept C41008148 @default.
- W2474360700 hasConcept C50644808 @default.
- W2474360700 hasConcept C83546350 @default.
- W2474360700 hasConcept C84525736 @default.
- W2474360700 hasConceptScore W2474360700C105795698 @default.
- W2474360700 hasConceptScore W2474360700C113174947 @default.
- W2474360700 hasConceptScore W2474360700C114614502 @default.
- W2474360700 hasConceptScore W2474360700C119857082 @default.
- W2474360700 hasConceptScore W2474360700C124101348 @default.
- W2474360700 hasConceptScore W2474360700C134306372 @default.
- W2474360700 hasConceptScore W2474360700C154945302 @default.
- W2474360700 hasConceptScore W2474360700C162324750 @default.
- W2474360700 hasConceptScore W2474360700C164226766 @default.
- W2474360700 hasConceptScore W2474360700C169258074 @default.
- W2474360700 hasConceptScore W2474360700C187736073 @default.
- W2474360700 hasConceptScore W2474360700C189430467 @default.
- W2474360700 hasConceptScore W2474360700C22019652 @default.
- W2474360700 hasConceptScore W2474360700C2780451532 @default.
- W2474360700 hasConceptScore W2474360700C28006648 @default.
- W2474360700 hasConceptScore W2474360700C33923547 @default.
- W2474360700 hasConceptScore W2474360700C41008148 @default.
- W2474360700 hasConceptScore W2474360700C50644808 @default.
- W2474360700 hasConceptScore W2474360700C83546350 @default.
- W2474360700 hasConceptScore W2474360700C84525736 @default.
- W2474360700 hasLocation W24743607001 @default.
- W2474360700 hasOpenAccess W2474360700 @default.
- W2474360700 hasPrimaryLocation W24743607001 @default.
- W2474360700 hasRelatedWork W1500254029 @default.
- W2474360700 hasRelatedWork W1588036380 @default.
- W2474360700 hasRelatedWork W1763021057 @default.
- W2474360700 hasRelatedWork W1790538901 @default.
- W2474360700 hasRelatedWork W2026563727 @default.
- W2474360700 hasRelatedWork W2052810935 @default.
- W2474360700 hasRelatedWork W2075830955 @default.
- W2474360700 hasRelatedWork W2108010283 @default.
- W2474360700 hasRelatedWork W2189067125 @default.
- W2474360700 hasRelatedWork W2613321912 @default.
- W2474360700 hasRelatedWork W2809290718 @default.
- W2474360700 hasRelatedWork W2918431969 @default.
- W2474360700 hasRelatedWork W2942632447 @default.
- W2474360700 hasRelatedWork W2949873225 @default.
- W2474360700 hasRelatedWork W2981848390 @default.
- W2474360700 hasRelatedWork W2998004119 @default.
- W2474360700 hasRelatedWork W3011853006 @default.
- W2474360700 hasRelatedWork W3101775687 @default.
- W2474360700 hasRelatedWork W3103850820 @default.
- W2474360700 hasRelatedWork W3183364302 @default.
- W2474360700 isParatext "false" @default.
- W2474360700 isRetracted "false" @default.
- W2474360700 magId "2474360700" @default.
- W2474360700 workType "dissertation" @default.