Matches in SemOpenAlex for { <https://semopenalex.org/work/W24743648> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W24743648 endingPage "150" @default.
- W24743648 startingPage "133" @default.
- W24743648 abstract "Abstract Pancreatic cancer is a highly malignant disease with a five-year survival rate less than 5%. Advances in modern data collection technology have revolutionized the way that we study the complex biological systems, allowing pancreatic cancer researchers to make genome-wide expression profiling within tumors in a fast, precise, and cost-effective way. How to correctly analyze and interpret the high-dimensional and complex gene expression data is a key to understanding the hidden regulatory mechanisms. In this work, we first introduce a LASSO penalized Cox regression method to identify individual genes that are directly related to survival time of pancreatic cancer patients. A cyclic coordinate descent algorithm is used for the computation of high-dimensional data (number of genes larger than number of patients). Then, we introduce a doubly regularized Cox regression method, which integrates pathway information into our analysis, to identify both genes and signaling pathways related to pancreatic cancer survival. Both methods are applied to a pancreatic cancer microarray dataset and identify several genes and signaling pathways correlated to pancreatic cancer survival. Our findings can help cancer researchers design new strategies for the early detection and diagnosis of pancreatic cancer." @default.
- W24743648 created "2016-06-24" @default.
- W24743648 creator A5030155062 @default.
- W24743648 creator A5044684896 @default.
- W24743648 creator A5090974026 @default.
- W24743648 date "2014-01-01" @default.
- W24743648 modified "2023-10-16" @default.
- W24743648 title "Statistical Analysis of High-Dimensional Data for Pancreatic Cancer" @default.
- W24743648 cites W1493440410 @default.
- W24743648 cites W1532431885 @default.
- W24743648 cites W1540764732 @default.
- W24743648 cites W1546709038 @default.
- W24743648 cites W1560979799 @default.
- W24743648 cites W1640494480 @default.
- W24743648 cites W1789519142 @default.
- W24743648 cites W1967191236 @default.
- W24743648 cites W1971608228 @default.
- W24743648 cites W1975022600 @default.
- W24743648 cites W1978848665 @default.
- W24743648 cites W1979300931 @default.
- W24743648 cites W1991233059 @default.
- W24743648 cites W1991328178 @default.
- W24743648 cites W1991497014 @default.
- W24743648 cites W1993528080 @default.
- W24743648 cites W1993637697 @default.
- W24743648 cites W2006813746 @default.
- W24743648 cites W2007701284 @default.
- W24743648 cites W2009815126 @default.
- W24743648 cites W2014843222 @default.
- W24743648 cites W2015021076 @default.
- W24743648 cites W2015418673 @default.
- W24743648 cites W2025970479 @default.
- W24743648 cites W2031567324 @default.
- W24743648 cites W2032388524 @default.
- W24743648 cites W2037367454 @default.
- W24743648 cites W2045121461 @default.
- W24743648 cites W2048867608 @default.
- W24743648 cites W2051292461 @default.
- W24743648 cites W2059297052 @default.
- W24743648 cites W2072623580 @default.
- W24743648 cites W2083839003 @default.
- W24743648 cites W2083891497 @default.
- W24743648 cites W2089881927 @default.
- W24743648 cites W2094472716 @default.
- W24743648 cites W2109635099 @default.
- W24743648 cites W2119152345 @default.
- W24743648 cites W2122189635 @default.
- W24743648 cites W2133650808 @default.
- W24743648 cites W2135046866 @default.
- W24743648 cites W2138155367 @default.
- W24743648 cites W2144869905 @default.
- W24743648 cites W2147368820 @default.
- W24743648 cites W2147454124 @default.
- W24743648 cites W2149199519 @default.
- W24743648 cites W2157795344 @default.
- W24743648 cites W2158731930 @default.
- W24743648 cites W2159370862 @default.
- W24743648 cites W3105543546 @default.
- W24743648 cites W2188329357 @default.
- W24743648 cites W2995133996 @default.
- W24743648 doi "https://doi.org/10.1016/b978-0-12-408103-1.00006-6" @default.
- W24743648 hasPublicationYear "2014" @default.
- W24743648 type Work @default.
- W24743648 sameAs 24743648 @default.
- W24743648 citedByCount "0" @default.
- W24743648 crossrefType "book-chapter" @default.
- W24743648 hasAuthorship W24743648A5030155062 @default.
- W24743648 hasAuthorship W24743648A5044684896 @default.
- W24743648 hasAuthorship W24743648A5090974026 @default.
- W24743648 hasConcept C121608353 @default.
- W24743648 hasConcept C126322002 @default.
- W24743648 hasConcept C2780210213 @default.
- W24743648 hasConcept C71924100 @default.
- W24743648 hasConceptScore W24743648C121608353 @default.
- W24743648 hasConceptScore W24743648C126322002 @default.
- W24743648 hasConceptScore W24743648C2780210213 @default.
- W24743648 hasConceptScore W24743648C71924100 @default.
- W24743648 hasLocation W247436481 @default.
- W24743648 hasOpenAccess W24743648 @default.
- W24743648 hasPrimaryLocation W247436481 @default.
- W24743648 hasRelatedWork W2043890160 @default.
- W24743648 hasRelatedWork W2091020218 @default.
- W24743648 hasRelatedWork W2122804063 @default.
- W24743648 hasRelatedWork W2337729630 @default.
- W24743648 hasRelatedWork W2365364931 @default.
- W24743648 hasRelatedWork W2401514044 @default.
- W24743648 hasRelatedWork W2418638721 @default.
- W24743648 hasRelatedWork W3103168443 @default.
- W24743648 hasRelatedWork W3104966608 @default.
- W24743648 hasRelatedWork W35632224 @default.
- W24743648 isParatext "false" @default.
- W24743648 isRetracted "false" @default.
- W24743648 magId "24743648" @default.
- W24743648 workType "book-chapter" @default.