Matches in SemOpenAlex for { <https://semopenalex.org/work/W2474535028> ?p ?o ?g. }
- W2474535028 abstract "Graph matching is an important component in many object recognition algorithms. Although most graph matching algorithms seek a one-to-one correspondence between nodes, it is often the case that a more meaningful correspondence exists between a subset of nodes in one graph and a subset of nodes in the other. In this thesis we aim to develop a framework to establish many-to-many correspondences between the nodes of two noisy, vertex-labeled weighted graphs. The difficulty of providing such correspondences is due to the fact that any subset of nodes in one graph may correspond to any subset of nodes in another. To overcome this combinatorial challenge, we transform the graphs into an alternative domain in which the many-to-many graph matching becomes that of matching point sets. Our interest in transforming the many-to-many graph matching problem into that of many-to-many point matching is motivated by the fact that a number of algorithms have proven useful in establishing such correspondences in the geometric space in polynomial-time. Our goal is to use one such algorithm to approximate the solution for the original graph representations. The algorithm is based on recent developments in efficient low-distortion metric embedding of graphs into normed vector spaces. We present two such embedding algorithms, beginning with Matousek's algorithm [66], in which the dimensionality of a graph's embedding is graph-dependent. Two graphs to be matched may yield embeddings with different dimensionality, requiring a projection step to bring them to the same space. We overcome this problem by introducing a novel embedding technique, using a spherical encoding of graph structure, that embeds both graphs into a single space of prescribed dimensionality. By embedding weighted graphs into normed vector spaces, we reduce the problem of many-to-many graph matching to the problem of computing a distribution-based distance measure between graph embeddings. We use a specific measure, the Earth Mover's Distance, to compute distances between sets of weighted vectors. The computed mass flows yield a set of many-to-many node correspondences between the original graphs. Empirical evaluation of the algorithm on an extensive set of recognition trials, including a comparison with competing graph matching approaches, demonstrates both the robustness and efficiency of the overall approach." @default.
- W2474535028 created "2016-07-22" @default.
- W2474535028 creator A5050989522 @default.
- W2474535028 creator A5058258391 @default.
- W2474535028 date "2021-07-16" @default.
- W2474535028 modified "2023-09-24" @default.
- W2474535028 title "Many-to-many feature matching for structural pattern recognition" @default.
- W2474535028 cites W1487822255 @default.
- W2474535028 cites W1489025000 @default.
- W2474535028 cites W1502916507 @default.
- W2474535028 cites W1535992660 @default.
- W2474535028 cites W1537292596 @default.
- W2474535028 cites W1538593755 @default.
- W2474535028 cites W1555960994 @default.
- W2474535028 cites W1562211034 @default.
- W2474535028 cites W1598382901 @default.
- W2474535028 cites W1843644176 @default.
- W2474535028 cites W1967935348 @default.
- W2474535028 cites W1973912434 @default.
- W2474535028 cites W1974318365 @default.
- W2474535028 cites W1977152005 @default.
- W2474535028 cites W1981853164 @default.
- W2474535028 cites W1984632497 @default.
- W2474535028 cites W1995848967 @default.
- W2474535028 cites W1997276658 @default.
- W2474535028 cites W2000795465 @default.
- W2474535028 cites W2001141328 @default.
- W2474535028 cites W2002284196 @default.
- W2474535028 cites W2010541316 @default.
- W2474535028 cites W2012459404 @default.
- W2474535028 cites W2013563330 @default.
- W2474535028 cites W2014217370 @default.
- W2474535028 cites W2018799963 @default.
- W2474535028 cites W2022924690 @default.
- W2474535028 cites W2027647533 @default.
- W2474535028 cites W2027697499 @default.
- W2474535028 cites W2035143052 @default.
- W2474535028 cites W2053186076 @default.
- W2474535028 cites W2057175746 @default.
- W2474535028 cites W2062284696 @default.
- W2474535028 cites W2063491776 @default.
- W2474535028 cites W2066864620 @default.
- W2474535028 cites W2068379792 @default.
- W2474535028 cites W2077264231 @default.
- W2474535028 cites W2079585857 @default.
- W2474535028 cites W2088114053 @default.
- W2474535028 cites W2088789263 @default.
- W2474535028 cites W2089213173 @default.
- W2474535028 cites W2091715895 @default.
- W2474535028 cites W2092924973 @default.
- W2474535028 cites W2094984135 @default.
- W2474535028 cites W2099789128 @default.
- W2474535028 cites W2100350068 @default.
- W2474535028 cites W2103497972 @default.
- W2474535028 cites W2104431043 @default.
- W2474535028 cites W2105038716 @default.
- W2474535028 cites W2105279502 @default.
- W2474535028 cites W2107257130 @default.
- W2474535028 cites W2108350934 @default.
- W2474535028 cites W2108611942 @default.
- W2474535028 cites W2109779101 @default.
- W2474535028 cites W2114766304 @default.
- W2474535028 cites W2115667499 @default.
- W2474535028 cites W2116493296 @default.
- W2474535028 cites W2117616929 @default.
- W2474535028 cites W2118782734 @default.
- W2474535028 cites W2122306963 @default.
- W2474535028 cites W2124391840 @default.
- W2474535028 cites W2125638038 @default.
- W2474535028 cites W2126559756 @default.
- W2474535028 cites W2128019145 @default.
- W2474535028 cites W2134356404 @default.
- W2474535028 cites W2135798954 @default.
- W2474535028 cites W2138562085 @default.
- W2474535028 cites W2141793995 @default.
- W2474535028 cites W2143498442 @default.
- W2474535028 cites W2143668817 @default.
- W2474535028 cites W2148116692 @default.
- W2474535028 cites W2148141929 @default.
- W2474535028 cites W2148542959 @default.
- W2474535028 cites W2148694408 @default.
- W2474535028 cites W2150559991 @default.
- W2474535028 cites W2153645845 @default.
- W2474535028 cites W2157575450 @default.
- W2474535028 cites W2159537329 @default.
- W2474535028 cites W2161029651 @default.
- W2474535028 cites W2161302553 @default.
- W2474535028 cites W2162130997 @default.
- W2474535028 cites W2162451590 @default.
- W2474535028 cites W2166838615 @default.
- W2474535028 cites W2168358734 @default.
- W2474535028 cites W2295332248 @default.
- W2474535028 cites W2338905098 @default.
- W2474535028 cites W2914195476 @default.
- W2474535028 doi "https://doi.org/10.17918/etd-656" @default.
- W2474535028 hasPublicationYear "2021" @default.
- W2474535028 type Work @default.
- W2474535028 sameAs 2474535028 @default.
- W2474535028 citedByCount "0" @default.
- W2474535028 crossrefType "dissertation" @default.