Matches in SemOpenAlex for { <https://semopenalex.org/work/W2474813776> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2474813776 endingPage "473" @default.
- W2474813776 startingPage "463" @default.
- W2474813776 abstract "Smart homes form one of the major components leveraging demand response within the smart grid paradigm. Flexible pricing policies along with the capability of scheduling power among many homes form the crux of a wide variety of smart home power management controllers. However leveraging power scheduling for smart homes while keeping user costs minimal is a challenging proposition and involves complex multistage, stochastic, non-linear optimization techniques. For ease of computation, heuristic algorithms can be employed that require consumer load corresponding to smart homes which are not available a priori. The efficiency of power scheduling heuristics, however depend on the accuracy of the consumer loads forecasted. In this paper, we focus on developing a technique that can efficiently forecast consumer loads and thereafter the predicted load is fed to a GA heuristic based power scheduling algorithm for smart homes. Detailed procedure for the aforementioned forecasting has been presented and the results obtained are analyzed." @default.
- W2474813776 created "2016-07-22" @default.
- W2474813776 creator A5011943818 @default.
- W2474813776 creator A5058870908 @default.
- W2474813776 creator A5060275869 @default.
- W2474813776 creator A5087409683 @default.
- W2474813776 date "2015-12-10" @default.
- W2474813776 modified "2023-09-25" @default.
- W2474813776 title "Predicting Consumer Loads for Improved Power Scheduling in Smart Homes" @default.
- W2474813776 cites W1975369974 @default.
- W2474813776 cites W2054493887 @default.
- W2474813776 cites W2121919248 @default.
- W2474813776 cites W2151661063 @default.
- W2474813776 cites W2155556726 @default.
- W2474813776 cites W3146844854 @default.
- W2474813776 doi "https://doi.org/10.1007/978-81-322-2731-1_44" @default.
- W2474813776 hasPublicationYear "2015" @default.
- W2474813776 type Work @default.
- W2474813776 sameAs 2474813776 @default.
- W2474813776 citedByCount "2" @default.
- W2474813776 countsByYear W24748137762016 @default.
- W2474813776 countsByYear W24748137762018 @default.
- W2474813776 crossrefType "book-chapter" @default.
- W2474813776 hasAuthorship W2474813776A5011943818 @default.
- W2474813776 hasAuthorship W2474813776A5058870908 @default.
- W2474813776 hasAuthorship W2474813776A5060275869 @default.
- W2474813776 hasAuthorship W2474813776A5087409683 @default.
- W2474813776 hasConcept C126255220 @default.
- W2474813776 hasConcept C206729178 @default.
- W2474813776 hasConcept C33923547 @default.
- W2474813776 hasConcept C41008148 @default.
- W2474813776 hasConceptScore W2474813776C126255220 @default.
- W2474813776 hasConceptScore W2474813776C206729178 @default.
- W2474813776 hasConceptScore W2474813776C33923547 @default.
- W2474813776 hasConceptScore W2474813776C41008148 @default.
- W2474813776 hasLocation W24748137761 @default.
- W2474813776 hasOpenAccess W2474813776 @default.
- W2474813776 hasPrimaryLocation W24748137761 @default.
- W2474813776 hasRelatedWork W1507894569 @default.
- W2474813776 hasRelatedWork W1543299114 @default.
- W2474813776 hasRelatedWork W1882733036 @default.
- W2474813776 hasRelatedWork W1969740176 @default.
- W2474813776 hasRelatedWork W1993538932 @default.
- W2474813776 hasRelatedWork W2160425906 @default.
- W2474813776 hasRelatedWork W2546696010 @default.
- W2474813776 hasRelatedWork W2997221951 @default.
- W2474813776 hasRelatedWork W3174582865 @default.
- W2474813776 hasRelatedWork W4319663761 @default.
- W2474813776 isParatext "false" @default.
- W2474813776 isRetracted "false" @default.
- W2474813776 magId "2474813776" @default.
- W2474813776 workType "book-chapter" @default.