Matches in SemOpenAlex for { <https://semopenalex.org/work/W2474830916> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2474830916 abstract "Many comparative studies on the performance of machine learning (ML) techniques for web cost estimation (WCE) have been reported in the literature. However, not much attention have been given to understanding the conceptual differences and similarities that exist in the application of these ML techniques for WCE, which could provide credible guide for upcoming practitioners and researchers in predicting the cost of new web projects. This paper presents a comparative analysis of three prominent machine learning techniques – Case-Based Reasoning (CBR), Support Vector Regression (SVR) and Artificial Neural Network (ANN) – in terms of performance, applicability, and their conceptual differences and similarities for WCE by using data obtained from a public dataset (www.tukutuku.com). Results from experiments show that SVR and ANN provides more accurate predictions of effort, although SVR require fewer parameters to generate good predictions than ANN. CBR was not as accurate, but its good explanation attribute gives it a higher descriptive value. The study also outlined specific characteristics of the 3 ML techniques that could foster or inhibit their adoption for WCE." @default.
- W2474830916 created "2016-07-22" @default.
- W2474830916 creator A5033280998 @default.
- W2474830916 creator A5044914031 @default.
- W2474830916 creator A5077047889 @default.
- W2474830916 date "2016-02-28" @default.
- W2474830916 modified "2023-09-27" @default.
- W2474830916 title "An Experimental Comparison of Three Machine Learning Techniques for Web Cost Estimation" @default.
- W2474830916 cites W119251915 @default.
- W2474830916 cites W1500151553 @default.
- W2474830916 cites W1515543456 @default.
- W2474830916 cites W1527723029 @default.
- W2474830916 cites W1575961892 @default.
- W2474830916 cites W1603123038 @default.
- W2474830916 cites W1663785929 @default.
- W2474830916 cites W1695350145 @default.
- W2474830916 cites W1964357740 @default.
- W2474830916 cites W1986033379 @default.
- W2474830916 cites W2039182691 @default.
- W2474830916 cites W2052110318 @default.
- W2474830916 cites W2081004173 @default.
- W2474830916 cites W2087585283 @default.
- W2474830916 cites W2104132866 @default.
- W2474830916 cites W2106282576 @default.
- W2474830916 cites W2110453763 @default.
- W2474830916 cites W2124380327 @default.
- W2474830916 cites W2126385963 @default.
- W2474830916 cites W2137552337 @default.
- W2474830916 cites W2146382566 @default.
- W2474830916 cites W2148603752 @default.
- W2474830916 cites W2159177827 @default.
- W2474830916 cites W2171816001 @default.
- W2474830916 cites W2187759318 @default.
- W2474830916 cites W298937102 @default.
- W2474830916 cites W66610085 @default.
- W2474830916 cites W88893317 @default.
- W2474830916 doi "https://doi.org/10.14257/ijseia.2016.10.2.16" @default.
- W2474830916 hasPublicationYear "2016" @default.
- W2474830916 type Work @default.
- W2474830916 sameAs 2474830916 @default.
- W2474830916 citedByCount "0" @default.
- W2474830916 crossrefType "journal-article" @default.
- W2474830916 hasAuthorship W2474830916A5033280998 @default.
- W2474830916 hasAuthorship W2474830916A5044914031 @default.
- W2474830916 hasAuthorship W2474830916A5077047889 @default.
- W2474830916 hasConcept C119857082 @default.
- W2474830916 hasConcept C12267149 @default.
- W2474830916 hasConcept C124101348 @default.
- W2474830916 hasConcept C154945302 @default.
- W2474830916 hasConcept C2776291640 @default.
- W2474830916 hasConcept C41008148 @default.
- W2474830916 hasConcept C50644808 @default.
- W2474830916 hasConceptScore W2474830916C119857082 @default.
- W2474830916 hasConceptScore W2474830916C12267149 @default.
- W2474830916 hasConceptScore W2474830916C124101348 @default.
- W2474830916 hasConceptScore W2474830916C154945302 @default.
- W2474830916 hasConceptScore W2474830916C2776291640 @default.
- W2474830916 hasConceptScore W2474830916C41008148 @default.
- W2474830916 hasConceptScore W2474830916C50644808 @default.
- W2474830916 hasLocation W24748309161 @default.
- W2474830916 hasOpenAccess W2474830916 @default.
- W2474830916 hasPrimaryLocation W24748309161 @default.
- W2474830916 hasRelatedWork W1508913055 @default.
- W2474830916 hasRelatedWork W1894550771 @default.
- W2474830916 hasRelatedWork W1967741238 @default.
- W2474830916 hasRelatedWork W2012753375 @default.
- W2474830916 hasRelatedWork W2059230750 @default.
- W2474830916 hasRelatedWork W2104777241 @default.
- W2474830916 hasRelatedWork W2106282576 @default.
- W2474830916 hasRelatedWork W2107578086 @default.
- W2474830916 hasRelatedWork W2109942136 @default.
- W2474830916 hasRelatedWork W2113128940 @default.
- W2474830916 hasRelatedWork W2122257750 @default.
- W2474830916 hasRelatedWork W2125595978 @default.
- W2474830916 hasRelatedWork W2257458935 @default.
- W2474830916 hasRelatedWork W2324283934 @default.
- W2474830916 hasRelatedWork W2603380515 @default.
- W2474830916 hasRelatedWork W2976215485 @default.
- W2474830916 hasRelatedWork W3096975346 @default.
- W2474830916 hasRelatedWork W3125061822 @default.
- W2474830916 hasRelatedWork W3201704777 @default.
- W2474830916 hasRelatedWork W917774098 @default.
- W2474830916 isParatext "false" @default.
- W2474830916 isRetracted "false" @default.
- W2474830916 magId "2474830916" @default.
- W2474830916 workType "article" @default.