Matches in SemOpenAlex for { <https://semopenalex.org/work/W2474848796> ?p ?o ?g. }
- W2474848796 endingPage "646" @default.
- W2474848796 startingPage "632" @default.
- W2474848796 abstract "Abstract Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time‐series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data." @default.
- W2474848796 created "2016-07-22" @default.
- W2474848796 creator A5021662267 @default.
- W2474848796 creator A5027073180 @default.
- W2474848796 creator A5033374139 @default.
- W2474848796 creator A5037284291 @default.
- W2474848796 creator A5074347474 @default.
- W2474848796 creator A5080552944 @default.
- W2474848796 creator A5082476482 @default.
- W2474848796 creator A5085750307 @default.
- W2474848796 creator A5090206814 @default.
- W2474848796 date "2017-02-01" @default.
- W2474848796 modified "2023-10-16" @default.
- W2474848796 title "The basis function approach for modeling autocorrelation in ecological data" @default.
- W2474848796 cites W1423766661 @default.
- W2474848796 cites W143236119 @default.
- W2474848796 cites W1494281971 @default.
- W2474848796 cites W1518897246 @default.
- W2474848796 cites W1534349507 @default.
- W2474848796 cites W1535538352 @default.
- W2474848796 cites W1553594703 @default.
- W2474848796 cites W1565089191 @default.
- W2474848796 cites W1590170795 @default.
- W2474848796 cites W1695074111 @default.
- W2474848796 cites W1837874438 @default.
- W2474848796 cites W1951659264 @default.
- W2474848796 cites W1966730755 @default.
- W2474848796 cites W1967075719 @default.
- W2474848796 cites W1973749534 @default.
- W2474848796 cites W1993631132 @default.
- W2474848796 cites W1993897679 @default.
- W2474848796 cites W1996653215 @default.
- W2474848796 cites W1998025025 @default.
- W2474848796 cites W1999907997 @default.
- W2474848796 cites W2003315067 @default.
- W2474848796 cites W2004807582 @default.
- W2474848796 cites W2004893966 @default.
- W2474848796 cites W2005850290 @default.
- W2474848796 cites W2010662787 @default.
- W2474848796 cites W2030597423 @default.
- W2474848796 cites W2030791924 @default.
- W2474848796 cites W2032032990 @default.
- W2474848796 cites W2039496997 @default.
- W2474848796 cites W2048776980 @default.
- W2474848796 cites W2089593279 @default.
- W2474848796 cites W2089792340 @default.
- W2474848796 cites W2090510582 @default.
- W2474848796 cites W2097601813 @default.
- W2474848796 cites W2104460116 @default.
- W2474848796 cites W2107858042 @default.
- W2474848796 cites W2111111567 @default.
- W2474848796 cites W2125214271 @default.
- W2474848796 cites W2128839442 @default.
- W2474848796 cites W2133305600 @default.
- W2474848796 cites W2133319490 @default.
- W2474848796 cites W2133480024 @default.
- W2474848796 cites W2137991683 @default.
- W2474848796 cites W2140826838 @default.
- W2474848796 cites W2149765389 @default.
- W2474848796 cites W2155988679 @default.
- W2474848796 cites W2157291679 @default.
- W2474848796 cites W2159837990 @default.
- W2474848796 cites W2166329490 @default.
- W2474848796 cites W2174661862 @default.
- W2474848796 cites W2175388707 @default.
- W2474848796 cites W2314945980 @default.
- W2474848796 cites W2322480672 @default.
- W2474848796 cites W2464471684 @default.
- W2474848796 cites W2485765038 @default.
- W2474848796 cites W2487770199 @default.
- W2474848796 cites W2496675188 @default.
- W2474848796 cites W2504996430 @default.
- W2474848796 cites W2526571932 @default.
- W2474848796 cites W2546797571 @default.
- W2474848796 cites W2787894218 @default.
- W2474848796 cites W3101389970 @default.
- W2474848796 cites W340592063 @default.
- W2474848796 cites W4205493629 @default.
- W2474848796 cites W4212863985 @default.
- W2474848796 cites W4233670554 @default.
- W2474848796 cites W4245399135 @default.
- W2474848796 cites W4247372376 @default.
- W2474848796 cites W4248681815 @default.
- W2474848796 cites W4250890478 @default.
- W2474848796 cites W4298870098 @default.
- W2474848796 cites W55912154 @default.
- W2474848796 doi "https://doi.org/10.1002/ecy.1674" @default.
- W2474848796 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27935640" @default.
- W2474848796 hasPublicationYear "2017" @default.
- W2474848796 type Work @default.
- W2474848796 sameAs 2474848796 @default.
- W2474848796 citedByCount "84" @default.
- W2474848796 countsByYear W24748487962016 @default.
- W2474848796 countsByYear W24748487962017 @default.
- W2474848796 countsByYear W24748487962018 @default.
- W2474848796 countsByYear W24748487962019 @default.
- W2474848796 countsByYear W24748487962020 @default.
- W2474848796 countsByYear W24748487962021 @default.