Matches in SemOpenAlex for { <https://semopenalex.org/work/W2474855286> ?p ?o ?g. }
- W2474855286 abstract "In this work, gold and semiconductor nanoparticles are used as building blocks for nanostructures, in which energy transfer is investigated. Nanoparticles have size-dependent controllable optical properties. Therefore, they are interesting objects to study different aspects and applications of energy transfer.Fluorescence quenching by gold nanoparticles is investigated and used to develop novel immunoassays for medically relevant molecules. The range of fluorescence quenching by gold nanoparticles is effective over longer distances than for dye molecules. The reason for this is the large absorption cross-section of gold nanoparticles and the radiative rate suppression of dyes caused by gold nanoparticles. The influence of gold nanoparticles on radiative and non-radiative rates of Cy3 and Cy3B dyes is studied here.A competitive, homogeneous immunoassay for digoxigenin and digoxin, a drug used to cure heart diseases, is developed. Dye-labeled digoxigenin is bound to the gold nanoparticles functionalized with anti-digoxigenin antibodies, quenching the dye fluorescence. Unlabeled digoxigenin partially replaces the dye-labeled digoxigenin leading to an increase of fluorescence. The assay has a limit of detection of 0.5 nM in buffer and 50 nM in serum. Time resolved spectroscopy reveals that the quenching is due to energy transfer with an efficiency of 70%.A homogeneous sandwich immunoassay for cardiac troponin T, an indicator of damage to the heart muscle, is developed. Gold nanoparticles and fluorophores are functionalized with anti-troponin T antibodies. In the presence of troponin T the nanoparticles and fluorophores form a sandwich structure, in which the dye fluorescence is quenched by a gold nanoparticle. The limit of detection of the immunoassay in buffer is 0.02 nM and 0.11 nM in serum. Energy transfer, with up to 95% efficiency, is responsible for the fluorescence quenching, as found through time resolved spectroscopy.Energy transfer is demonstrated in clusters of CdTe nanocrystals assembled using three methods. In the first method, clusters of differently-sized water soluble CdTe nanocrystals capped by negatively charged mercaptoacid stabilizers are produced through electrostatic interactions with positively charged Ca(II) cations. The two other methods employ covalent binding through dithiols and thiolated DNA as linkers between nanocrystals. Energy transfer from smaller nanocrystals to larger nanocrystals in aggregates is demonstrated by means of steady-state and time-resolved photoluminescence spectroscopy, paving the way for nanocrystal-based light harvesting structures in solution. Multi-shell onion-like CdSe/ZnS/CdSe/ZnS nanocrystals are presented. In these structures the CdSe core and the CdSe shell produce two emission peaks upon UV light excitation. When the emission peaks are well matched, the resulting emission appears as pure white light. The shade of the white light can be controlled by annealing the particles. Evidence for intra-nanocrystal energy transfer is presented." @default.
- W2474855286 created "2016-07-22" @default.
- W2474855286 creator A5000329014 @default.
- W2474855286 date "2009-06-19" @default.
- W2474855286 modified "2023-09-23" @default.
- W2474855286 title "Exploiting Energy Transfer in Hybrid Metal and Semiconductor Nanoparticle Systems for Biosensing and Energy Harvesting" @default.
- W2474855286 cites W124025334 @default.
- W2474855286 cites W1490146269 @default.
- W2474855286 cites W150250726 @default.
- W2474855286 cites W1537526970 @default.
- W2474855286 cites W1552527487 @default.
- W2474855286 cites W1556801875 @default.
- W2474855286 cites W1818150387 @default.
- W2474855286 cites W1879178365 @default.
- W2474855286 cites W1970435434 @default.
- W2474855286 cites W1971767966 @default.
- W2474855286 cites W1973305697 @default.
- W2474855286 cites W1974172339 @default.
- W2474855286 cites W1974467570 @default.
- W2474855286 cites W1977624242 @default.
- W2474855286 cites W1983972900 @default.
- W2474855286 cites W1984137161 @default.
- W2474855286 cites W1984482275 @default.
- W2474855286 cites W1986896605 @default.
- W2474855286 cites W1990805101 @default.
- W2474855286 cites W1994265576 @default.
- W2474855286 cites W1997237347 @default.
- W2474855286 cites W1998421692 @default.
- W2474855286 cites W1998860058 @default.
- W2474855286 cites W1999411416 @default.
- W2474855286 cites W2000042152 @default.
- W2474855286 cites W2002943458 @default.
- W2474855286 cites W2003028703 @default.
- W2474855286 cites W2011017973 @default.
- W2474855286 cites W2011064663 @default.
- W2474855286 cites W2013403869 @default.
- W2474855286 cites W2014468482 @default.
- W2474855286 cites W2016909687 @default.
- W2474855286 cites W2016977479 @default.
- W2474855286 cites W2017623768 @default.
- W2474855286 cites W2022064145 @default.
- W2474855286 cites W2023147957 @default.
- W2474855286 cites W2023805520 @default.
- W2474855286 cites W2025669689 @default.
- W2474855286 cites W2031423308 @default.
- W2474855286 cites W2032072774 @default.
- W2474855286 cites W2033172935 @default.
- W2474855286 cites W2034732966 @default.
- W2474855286 cites W2035579953 @default.
- W2474855286 cites W2039862799 @default.
- W2474855286 cites W2044543075 @default.
- W2474855286 cites W2052650655 @default.
- W2474855286 cites W2053146969 @default.
- W2474855286 cites W2054176371 @default.
- W2474855286 cites W2055513918 @default.
- W2474855286 cites W2059277424 @default.
- W2474855286 cites W2060152947 @default.
- W2474855286 cites W2062556705 @default.
- W2474855286 cites W2062817507 @default.
- W2474855286 cites W2065706045 @default.
- W2474855286 cites W2067148970 @default.
- W2474855286 cites W2070511522 @default.
- W2474855286 cites W2075095384 @default.
- W2474855286 cites W2076951286 @default.
- W2474855286 cites W2078322878 @default.
- W2474855286 cites W2078716039 @default.
- W2474855286 cites W2083073535 @default.
- W2474855286 cites W2085548221 @default.
- W2474855286 cites W2089107357 @default.
- W2474855286 cites W2089466119 @default.
- W2474855286 cites W2090854258 @default.
- W2474855286 cites W2091022916 @default.
- W2474855286 cites W2091719406 @default.
- W2474855286 cites W2094517427 @default.
- W2474855286 cites W2095040604 @default.
- W2474855286 cites W2097552134 @default.
- W2474855286 cites W2102917354 @default.
- W2474855286 cites W2104159790 @default.
- W2474855286 cites W2113442780 @default.
- W2474855286 cites W2121523222 @default.
- W2474855286 cites W2123617708 @default.
- W2474855286 cites W2127371360 @default.
- W2474855286 cites W2142175727 @default.
- W2474855286 cites W2151894089 @default.
- W2474855286 cites W2155073738 @default.
- W2474855286 cites W2159117738 @default.
- W2474855286 cites W2160956229 @default.
- W2474855286 cites W2161369441 @default.
- W2474855286 cites W2163123322 @default.
- W2474855286 cites W2168172378 @default.
- W2474855286 cites W2603207810 @default.
- W2474855286 cites W2952382854 @default.
- W2474855286 cites W323936032 @default.
- W2474855286 cites W579617218 @default.
- W2474855286 cites W587718711 @default.
- W2474855286 cites W60391619 @default.
- W2474855286 cites W653880686 @default.
- W2474855286 cites W86392418 @default.
- W2474855286 cites W1884057593 @default.
- W2474855286 hasPublicationYear "2009" @default.