Matches in SemOpenAlex for { <https://semopenalex.org/work/W2474865708> ?p ?o ?g. }
- W2474865708 endingPage "114" @default.
- W2474865708 startingPage "100" @default.
- W2474865708 abstract "Abstract The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities regardless of the water chemical potential. The equilibrium morphology of pyrophyllite crystals is also expected to be dependent on these two environmental variables. Surface defects may impact the surface reactivity. We discuss the thermodynamic stability of a possible Si cation vacancy defect which provides additional hydroxyl group on the surface." @default.
- W2474865708 created "2016-07-22" @default.
- W2474865708 creator A5005698716 @default.
- W2474865708 creator A5062079922 @default.
- W2474865708 date "2016-10-01" @default.
- W2474865708 modified "2023-10-17" @default.
- W2474865708 title "Structure and stability of pyrophyllite edge surfaces: Effect of temperature and water chemical potential" @default.
- W2474865708 cites W1194442336 @default.
- W2474865708 cites W1575366268 @default.
- W2474865708 cites W1971442542 @default.
- W2474865708 cites W1977067869 @default.
- W2474865708 cites W1977452033 @default.
- W2474865708 cites W1978684727 @default.
- W2474865708 cites W1981368803 @default.
- W2474865708 cites W1985957741 @default.
- W2474865708 cites W1999777186 @default.
- W2474865708 cites W2007230074 @default.
- W2474865708 cites W2009643682 @default.
- W2474865708 cites W2010709669 @default.
- W2474865708 cites W2021176213 @default.
- W2474865708 cites W2021929078 @default.
- W2474865708 cites W2022298832 @default.
- W2474865708 cites W2024391077 @default.
- W2474865708 cites W2026725356 @default.
- W2474865708 cites W2031871840 @default.
- W2474865708 cites W2033008853 @default.
- W2474865708 cites W2033446387 @default.
- W2474865708 cites W2036113194 @default.
- W2474865708 cites W2038744841 @default.
- W2474865708 cites W2044591029 @default.
- W2474865708 cites W2045954883 @default.
- W2474865708 cites W2049789123 @default.
- W2474865708 cites W2052087565 @default.
- W2474865708 cites W2054645853 @default.
- W2474865708 cites W2055042825 @default.
- W2474865708 cites W2057181841 @default.
- W2474865708 cites W2057848213 @default.
- W2474865708 cites W2064584960 @default.
- W2474865708 cites W2075978710 @default.
- W2474865708 cites W2076605490 @default.
- W2474865708 cites W2087585288 @default.
- W2474865708 cites W2087678058 @default.
- W2474865708 cites W2092812740 @default.
- W2474865708 cites W2093674996 @default.
- W2474865708 cites W2094383271 @default.
- W2474865708 cites W2094763478 @default.
- W2474865708 cites W2100230928 @default.
- W2474865708 cites W2117437661 @default.
- W2474865708 cites W2135752554 @default.
- W2474865708 cites W2147038629 @default.
- W2474865708 cites W2148508034 @default.
- W2474865708 cites W2157297038 @default.
- W2474865708 cites W2158424724 @default.
- W2474865708 cites W2159752439 @default.
- W2474865708 cites W2198725214 @default.
- W2474865708 cites W2303683068 @default.
- W2474865708 cites W2316182704 @default.
- W2474865708 cites W2323303248 @default.
- W2474865708 cites W2413414999 @default.
- W2474865708 cites W2769718553 @default.
- W2474865708 cites W3106375394 @default.
- W2474865708 doi "https://doi.org/10.1016/j.gca.2016.06.021" @default.
- W2474865708 hasPublicationYear "2016" @default.
- W2474865708 type Work @default.
- W2474865708 sameAs 2474865708 @default.
- W2474865708 citedByCount "31" @default.
- W2474865708 countsByYear W24748657082016 @default.
- W2474865708 countsByYear W24748657082017 @default.
- W2474865708 countsByYear W24748657082018 @default.
- W2474865708 countsByYear W24748657082019 @default.
- W2474865708 countsByYear W24748657082020 @default.
- W2474865708 countsByYear W24748657082021 @default.
- W2474865708 countsByYear W24748657082022 @default.
- W2474865708 countsByYear W24748657082023 @default.
- W2474865708 crossrefType "journal-article" @default.
- W2474865708 hasAuthorship W2474865708A5005698716 @default.
- W2474865708 hasAuthorship W2474865708A5062079922 @default.
- W2474865708 hasBestOaLocation W24748657081 @default.
- W2474865708 hasConcept C112972136 @default.
- W2474865708 hasConcept C119857082 @default.
- W2474865708 hasConcept C127413603 @default.
- W2474865708 hasConcept C159985019 @default.
- W2474865708 hasConcept C162307627 @default.
- W2474865708 hasConcept C192562407 @default.
- W2474865708 hasConcept C2780999085 @default.
- W2474865708 hasConcept C41008148 @default.
- W2474865708 hasConcept C76155785 @default.
- W2474865708 hasConceptScore W2474865708C112972136 @default.
- W2474865708 hasConceptScore W2474865708C119857082 @default.
- W2474865708 hasConceptScore W2474865708C127413603 @default.
- W2474865708 hasConceptScore W2474865708C159985019 @default.
- W2474865708 hasConceptScore W2474865708C162307627 @default.
- W2474865708 hasConceptScore W2474865708C192562407 @default.
- W2474865708 hasConceptScore W2474865708C2780999085 @default.
- W2474865708 hasConceptScore W2474865708C41008148 @default.
- W2474865708 hasConceptScore W2474865708C76155785 @default.
- W2474865708 hasFunder F4320306084 @default.
- W2474865708 hasFunder F4320322030 @default.